Showing posts with label New York. Show all posts
Showing posts with label New York. Show all posts

Tutorial: The Yokogawa SMARTDAC+ GX/GP Paperless Recorder Channel Settings


The Yokogawa SMARTDAC+ GX and GP are fully integrated measurement, display, and recording platforms equipped with an advanced touch screen operator interface. GX series is a panel-mount design, capable of operating in harsh industrial applications and environments. GP is the portable version of the GX, intended for use in lab and test bench applications.

This video is a tutorial to learn the display settings available within the SmartDAC+  GX/GP's analog input, digital input, digital output, math, and communication channel settings.

For more information about the Yokogawa SMARTDAC+ GX/GP Paperless Recorder contact Miller Energy, Inc. Call them at 800-631-5454 or visit their web site at https://millerenergy.com.

Installing the ASCO 212 Series Composite Valve Using the FasN Connection System


The ASCO series 212 composite valve is intended for use in applications for water purification and water treatment, especially in the implementation of the membrane-based filtration. The composite valve series 212 is perfect for use in mid-size Reverse Osmosis Systems apps requiring lead-free and NSF-approved construction. The series 212 composite valves are available in 3/8", 1/2", 3/4", and 1" pipe sizes rated for pressures up to 150 PSIG and 180 degrees F.

The video above demonstrates how to install the series 212 using the patented ASCO FasN system for NPT threaded connections, turn and lock connections, and solvent bond connections.

For more information, contact Miller Energy Inc. by calling 800-631-5454 or visit their web site at https://millerenergy.com.

The Design Principle of Segment Disc Control Valves


Figure 1.
The central throttle device of this control valve is two discs with segmented openings which slide on one another and seal against each other (Fig. 1). The segment discs are positioned vertically in the valve housing, facing the direction of flow. A moving disc is placed upon a rotationally fixed segment disc, the geometry of which determines the throughput capacity and characteristic curve. These two discs have the same number of segments and the moving disc is rotated via a push rod which is tangentially inserted. Consequently, the cross-section surface of the free segment passage changes when a control intervention is made.

Irrespective of the pending pressure differential, the moving segment disc is pressed onto the fixed disc via a spring pack- age. This ensures that the direction of flow is variable and that the valve can be installed in any desired location. Due to the fact that there are no metal seats with ring-shaped contact surfaces, no grooves will occur which can rapidly lead to leaks in traditional steam valves. Leakage ratios amounting to < 0.001% of the Kvs value are constantly achieved with the significantly less vulnerable surface seal.

Extremely robust segment disc valve from
Schubert & Salzer for steam distribution.
Thanks to this special design, segment disc valves are one of the few valves that are able to combine control precision and a high level of tightness, even in extreme conditions and which also experience hardly any wear.

The standard segment disc valves are available in finely graduated intervals of between DN 25 and DN 300 – and go up to DN 800 where necessary – in an intermediate flange design for nominal pressures up to PN 25. They can be used for media temperatures ranging between -60°C and +220°C (higher temperatures and nominal pressures are available on request). The robust valves have a rangeability of 60:1.

For more information, contact Miller Energy, Inc. by calling 800-631-5454, or visit their web site at https://millerenergy.com.

Understanding How Flame Arresters Work


Flame Arrester
A Flame Arrester (or arrestor) is a passive devices with no moving parts, that allows hot gas to pass through, but stops a flame in order to prevent a larger fire or explosion.  Flame Arresters uses a wound metal ribbon type element that prevents the spread of flame from the exposed side of the arrester to the protected side of the arrester. The metal element's construction provides a matrix of engineered openings that are carefully calculated and sized to quench the flame by absorbing the flame's heat. As an explosion flame travels through a narrow metal space, heat is transmitted to the walls, energy is lost and only vapor gasses are able to pass through. Flame Arresters are used in many industries chemical, petrochemical, pulp and paper, refining, pharmaceutical, mining, power generation, and wastewater treatment.

Cashco Flame Arresters are specifically engineered to match the explosive mixtures Maximum Experimental Safe Gap, in order to ensure complete extinction of the flame. At the heart of each Cashco flame arrestor lies filter discs that consists of wound, smooth and channeled strips of stainless steel set at specific maximum experimental stage gaps the smaller the gaps are which the flame travels the more heat and energy is lost therefore the filters gap width and gap length are specifically engineered to match the explosive mixture in order to ensure complete extinction of the flame. 

To learn more about Cashco flame arrestors, contact Miller Energy, Inc. by calling 908-755-6700 or by visiting https://millerenergy.com.


The Yokogawa YS1700 Single Loop Controller Replaces Obsolete Moore/Siemens 353

Yokogawa YS1700

Now that entire Moore/Siemens 350 family is obsolete, are you considering upgrading to a DCS? 


Are you concerned about the cost and time for a new installation, application development and personnel training?

Is it possible that the new equipment vendor may again leave you stranded with their equipment as their core business is not industrial automation and control?

We have a better solution for you: Yokogawa and its YS1700 PID loop controller. Yokogawa has been providing industrial solutions, as their primary business, for over a century and their YS1700 will keep you off of eBay looking for spare 353 parts.

Interface in the Field: Achieving Reliable Interface Measurement to Optimize Process and Increase Uptime

Interface or multiphase level measurements exist throughout the Oil & Gas streams as well as Petrochemical. While level measurement technologies have come a long way in effectively measuring liquids and solids, multiphase level measurement continues to be the biggest challenge and opportunity that exists today to which there is no perfect technology.

However, experience has shown that process optimization and increased uptime can still be achieved in many separator applications through reliable, best-in-class, level technology.

The objective of this paper is to review interface challenges, the current technologies being utilized for interface, field experience in various applications to achieve process optimization and increased uptime, and the future of reliable interface measurement.

DOWNLOAD THE TECHNICAL PAPER HERE

Courtesy of Magnetrol and Miller Energy, Inc.
https://millerenergy.com
800-631-5454

ASCO Express Product Catalog

The ASCO Express program features a range of flow control products and accessories available for shipment the same day you order them. The products listed in this catalog provide the performance required for a variety of system and process applications including boiler, air handling, process control, and water and steam control. The control voltages available for each product are the primary voltages used in industrial and commercial applications today.

908-755-6700

Temperature Switches

temperature switch
Temperature switch
(United Electric Controls)
A temperature switch detects the temperature of some substance. Temperature switches often use bimetallic strips as the temperature-sensing element, the motion of which actuates one or more switch contacts. An alternative design uses a metal bulb filled with a fluid that expands with temperature, causing the switch mechanism to actuate based on the pressure this fluid exerts against a diaphragm or bellows. This latter temperature switch design is really a pressure switch, whose pressure is a direct function of process temperature by virtue of the physics of the entrapped fluid inside the sensing bulb.

The “normal” status of a switch is the resting condition of no stimulation. A temperature switch will be in its “normal” status when it senses minimum temperature (i.e. cold, in some cases a condition colder than ambient). For a temperature switch, “normal” status is any sensed temperature below the trip threshold of the switch.

switch contacts

Like all other process switches, temperature switches exhibit a certain amount of deadband in their switching action. A temperature switch that trips at 300 F rising, for example, will not reset at 300 F falling. That switch would more likely reset at some lower temperature such as 295 F. With mechanical switch designs, some amount of deadband is inevitable due to friction inside the mechanism. However, process switch deadband is actually a useful characteristic as it helps avoid repeated “nuisance” alarms from happening.

To understand this concept, it is helpful to imagine a scenario where the process variable is at or very near the trip point. For our hypothetical temperature switch with a trip point of 300 F (rising), imagine a situation where the process temperature is precisely 300.0 F. Any further rise in temperature will of course trip the switch (sounding an alarm). With no deadband, however, the switch will immediately re-set when the temperature falls back down to 300.0 F. This means the switch may possibly “cycle” back and forth between its trip and reset states with just a minute change in process temperature (300.0 F to 300.1 F and back again). If the temperature switch is activating an alarm every time it trips, it will create a series of alarm events prompting operators to repeatedly acknowledge the alarm. This is a nuisance to operations personnel, as it distracts them from addressing what they already realize is a process problem. It is better for the switch to trip at 300.0 F rising and remain in that tripped state until the temperature falls down to some degree substantially below the trip point. This way, the operators only receive one alarm event rather than multiple alarm events for each process temperature excursion.

Some mechanical temperature switches come equipped with a separate adjustment for deadband (also called differential). Setting this deadband adjustment in a mechanical temperature switch requires the technician to repeatedly subject the sensing element to a rising and falling temperature, to check that the switch trips at the proper setting and resets at the proper setting. This is analogous to cycling the process variable back and forth when adjusting the “zero” and “span” settings of an analog transmitter: checking to see that the transmitter repeatedly outputs a 0% signal at the lower range value (LRV) and a 100% signal at the upper range value (URV). 

For discrete temperature-sensing applications demanding high accuracy and repeatability, electronic temperature switch circuits using thermocouples, RTDs, or thermistors may be used instead of a mechanical (bi-metallic or filled bulb) sensing element. The operation and configuration of discrete electronic temperature switches is very similar to that of continuous electronic temperature transmitters.

An example of an electronic temperature switch module is the United Electric One Series shown below:

UE Series One Electronic Temperature Switch
UE Series One Electronic Temperature Switch

With electronic temperature switches, the adjustment of deadband (differential) is both precise and flexible. Unlike mechanical switches where deadband is primarily a function of friction, and therefore liable to change over time as the device wears, electronic switching circuits may be precisely set for any trip and reset points along its measurement range, remaining very stable over time.

For more information about temperature switches, contact Miller Energy by visiting https://millerenergy.com or by calling 908-755-6700.


Text adapted from "Lessons In Industrial Instrumentation" by Tony R. Kuphaldt – under the terms and conditions of the Creative Commons Attribution 4.0 International Public License.

How Do Pilot Operated Tank Relief Valves Work?

Storage tanks become pressurized when liquid is pumped in and compresses the existing tank vapor. Tanks also become pressurized due to increasing ambient temperatures, which cause the tank vapor to expand. To mitigate damage from these expanding tank vapors, pressure relief valves are installed on tanks to prevent structural damage resulting from over-pressure.

Here is an excellent animation, courtesy of Cashco, that shows how a pilot operated relief vent protects a storage tank from over pressurizing during a pump-in situation or during thermal heating conditions.


For more information on tank relief valves, contact Miller Energy at www.millerenergy.com or by calling 908-755-6700.

Common Instrumentation Requirements for Industrial Boilers

Instrumentation Used on Industrial Boilers
Typical boiler instrumentation layout.
(courtesy of Yokogawa)
Boilers are used in a broad range of industries such as electric power, pharmaceuticals, chemicals, ceramics, and paper and pulp. Amid the rising energy costs, tightening environmental regulations, and increasing awareness of safety as of late, the needs for high efficiency operation, low emission operation, and safe and stable operation of boilers are growing.

In order to ensure the air and fuel are combusted at an optimal ratio, the waste of fuel is eliminated, and the exhaust gas is cleaned, real-time monitoring of the oxygen concentration of combustion gases is required. Equipped with an oxygen sensor unit with a longer life span, the Zirconia Oxygen Analyzer ZR series are capable of measuring an oxygen concentration with high reliability. The Stack Gas Analyzer monitors exhaust gas components such as NOX, SO2, and CO2 in order to ensure low emission operation.

A single-loop controller can be used to properly distribute control functionality. Offering the advantages of flexibility of building distributed control systems, simple maintenance, compatibility with conventional systems, and the like, the YS1000 Series of Single-loop Controllers are ideal for safe and stable operation at low costs.

In order to ensure highly efficient and safely operated boilers, it is also indispensable to accurately monitor the drum level and steam flow rate. The EJA and EJX Series of Differential Pressure Transmitters are capable of measuring the drum level with high stability even in actual applications at high temperatures and high pressures. The DY Series MV TYPE of Vortex Flowmeters with a simple construction employ a built-in sensor to measure the steam mass flow with high reliability.

Yokogawa offers a wide variety of sensors and controllers that are used to monitor and operate boilers, and contributes to increasing the efficiency and environmental performance of boilers, as well as ensuring their safe and stable operation.

Recommended Products for Boiler Applications


  • Drum Level Measurement - EJA/EJX transmitters
  • Combustion Control - The YS1000 Dual CPU Loop Controller
  • Steam Flow Measurement - Digital YEWFLO MV Type
  • Combustion Monitoring - Zirconia Oxygen Analyzers and AV550G Multi Oxygen Sensor Converter

For more information in Eastern Pennsylvania, New Jersey, Metro New York or Delaware contact:
Miller Energy by visiting https://millerenergy.com or by calling 908-755-6700 in New Jersey, or 610-363-6200 in Pennsylvania.

Breakthrough Solenoid Valve Technology for Upstream Oil and Gas Heating Equipment

A white paper courtesy of ASCO Division of Emerson Automation
fuel shutoff valves
Fuel shutoff valves (ASCO)
Low-temperature stainless steel fuel shutoff valves are usually utilized for on/off control of fuel gas within gas fuel trains in process heating system burners. These systems are widely used by oil and gas firms as well by as original equipment manufacturers (OEMs) that produce gas heating equipment or burner management systems (BMSs) and controls in upstream oil and gas pipelines and tanks.

For valve manufacturers, these uses present a relatively specialized, rather challenging application. Environmental conditions at the point of use are often difficult. Ideally, valves should deliver reliable operation despite constraints on factors ranging from power consumption to service availability. Conversely, outdated controls can pose problems — including poor performance, noncompliance with current regulations, and triggering of environmental concerns.

In recent years, a new generation of solenoid valve technology has been changing the shutoff valve game. Their modern designs provide pipeline and tank heating systems with robust, durable performance; safety; and regulatory compliance — all while increasing efficiency and productivity.

Download the PDF version of "Breakthrough Solenoid Valve Technology for Upstream Oil and Gas Heating Equipment" here, or review it in the embedded document below.

Miller Energy, Inc.
https://millerenergy.com
New Jersey: 908-755-6700
Pennsylvania: 610-363-6200

Miller Energy, Inc. - Expertly Serving These Industries in the Mid-Atlantic Region

Miller Energy is a Manufacturer's Representative and Distributor of Industrial Instrumentation and Process Control Equipment with offices in South Plainfield, NJ and Exton, PA. In business since Since 1958, Miller's success is attributable to their commitment to exceeding their customers expectations and a comprehensive line of "best-of-breed" measurement, control, and communication products. With a strong reputation for unparalleled customer service and expert local technical support,  Miller Energy continues to demonstrate strong growth in the Mid-Atlantic region.


https://millerenergy.com
908-755-6700 NJ
610-363-6200 PA

Industrial Refractometers Used in Process Control

Refractometer Pharmaceutical Use
Refractometer for pharmaceutical use (K-Patents).
Part physics, part material science and part chemistry, refractometry is the process which measures the composition of known substances by means of calculating their respective refractive indexes (RI). RIs are evaluated via a refractometer, a device which measures the curve, or refraction, resulting when the wavelength of light moves from the air into and through a tested substance. The unitless number given by the refractometer, usually between 1.3000 and 1.7000, is the RI. The composition of substances is then determined when the RI is compared to a standard curve specific to the material of the substance.

Process refractometers provide the analysis to quickly, reliably, and very accurately identify a sample and determine it's concentration and purity levels. They measure the refractive index and temperature of flowing liquids, and apply mathematical functions to determine the concentration of dissolved solids.

Common industrial refractometer applications are:
  • Calculating beverages’ amount of sugar dissolved is water.
  • In commercial food applications such as juice production or tomato processing, refractometers are used to measure degrees Brix (Tthe Brix scale relates refractive index to sugar concentration, and is a key way to maintain consistency).
  • In the pharmaceutical industry, process refractometers are used to monitor and control concentration levels during supersaturation, a critical process in crystallization.
  • In pulp and paper production, process refractometers for measuring dissolved solids in black and green liquor during the chemical recovery process.
Equipment manufacturers have developed numerous refractometer configurations tailored to specific each use and application. Each has a set of features making it the advantageous choice for its intended application. Product specialists can be invaluable sources of information and assistance to potential refractometer users seeking to match the best equipment to their application or process.

For more information on industrial refractometers, contact Miller Energy by visiting https://millerenergy.com or by calling 908-755-6700 in New Jersey or 610-363-6200 in Pennsylvania.

Laboratory Flame Testing of Industrial Pressure Gauges: Wika vs. Competitor

Laboratory flame testing of industrial pressure gauges. Manufacturer Wika versus a competitor. The test is structured in (3) stages: a 10 second burn, a 30 second burn, and then a one minute burn. The Wika gauge maintains its reading, does not melt, and does not continue to burn.

https://millerenergy.com
New Jersey 908-755-6700
Pennsylvania 610-363-6200

Flow & Pressure Instrumentation for Biopharmaceuticals & Life Sciences

Flow & Pressure Instrumentation for Biopharmaceuticals & Life SciencesProducing biopharmaceuticals is one of the world’s most demanding manufacturing processes.

Brooks Instrument’s mass flow and pressure control technology helps maximize cell culture yields and control bioprocess costs. Their flow
and pressure controllers set global standards for reliability, repeatability and long-term stability.

Brooks Instrument mass flow controllers (MFCs) satisfy key biotechnology research and production requirements:
  • Tight control of DO and pH during experiments and production
  • NO unplanned downtime due to high cost of losing a batch or experiment
  • Ability to rapidly diagnose and resolve issues with bioreactors or fermentation equipment
  • Cost-effective method for adhering to regulatory requirements
  • Excellent technical support and rapid response for equipment service


Cashco / Valve Concepts Model 3100 Packing Material Removal and Weight Installation Instructions

Valve Concepts Model 3100
Valve Concepts Model 3100
The Model 3100 end-of-line conservation breather vent is part of the Valve Concepts, Inc. modular vent product line. The Model 3100 can easily be field converted to a vacuum only vent, a pressure/vacuum vent with pipe away and can either be direct acting or pilot operated.

The Model 3100 end-of-line conservation breather vent is designed for use on atmospheric and low-pressure storage tanks where pressure and vacuum relief is required.

How it Works

Weight loaded pallets in the vent housing allow the intake of air and the escape of vapors as the tank breathes due to thermal changes and product movement in and out of the tank. The pallets open and close to permit in breathing and out breathing necessary to maintain the tank pressure within permissible limits to avoid damage to the tank.

Miller Energy - Industrial Instrumentation & Process Control Equipment

Miller Energy is a Manufacturer's Representative and Distributor of Industrial Instrumentation and Process Control Equipment. Since 1958, we have been committed to exceeding our customers expectations by providing an unparalleled level of customer service and local technical support. We offer the most comprehensive line of measurement, control, and communication solutions in the Industry today. The products we represent solve challenging applications in the Industrial Gas, Power, Refining, Chemical / Petro-Chemical, Food & Beverage, Water/Wastewater, and Pharmaceutical markets.

NJ 908-755-6700 
PA 610-363-6200

Electronic to Pneumatic Converter

illustration of setup for current to pneumatic converter
Component schematic using electronic controller and pneumatic
control valve
Image courtesy of Yokogawa
A straight forward device, the current to pneumatic converter produces a pneumatic output signal that is proportional to an electrical control level input signal of 4 to 20 mA or 10 to 50 mA. This provides a useful interface between electronic controllers and pneumatically operated valves, air cylinders, or other air operated control elements.

Pneumatic signals are regularly used throughout many installations as matter of safety, legacy, or because a pneumatic signal can provide motive power to an operating device such as a valve positioner. Electrical control signals can be transmitted long distances across wires to deliver control signals to operating elements. The current to pneumatic converter provides a bridge between the two systems and allows the most beneficial aspects of each to be brought to bear on process operation.

Converters are available in standard variants that accommodate a number of hazardous location designations, as well as several output pressure ranges and calibrations. Share your process control connectivity challenges with application specialists, combining your own process knowledge and experience with their product application expertise to develop effective solutions.


Valves for LNG and CNG Operations

high pressure valve intended for use with natural gas
Valve specially designed for gas extraction operations
has integral bypass which equalizes pressure across the
valve prior to opening the main line, reducing torque
requirements and  piping stress.
Courtesy Habonim
The production and distribution of natural gas presents operators with substantial logistical, safety, and physical challenges. Maintaining flow control, containing, and dispensing of natural gas, CNG, and LNG are hazardous endeavors requiring special equipment configuration throughout the supply chain.

Source and pipeline operations are faced with high pressure and extreme working environments. At various points along the distribution path, valves will be needed to regulate or direct flow and isolate portions of the system for safety or service. Emergency shutdown valves must be configured and installed to provide failure-proof reliability when called upon to operate. Transportation containers and equipment will utilize specialized valves adapted for the pressure, temperature, and reliability requirements of the application and industry. Additionally, some may need to survive fire conditions without failure.

Fueling stations for compressed natural gas employ valves that will endure cold temperatures produced by gas expansion, plus dynamic pressure cycling. Bubble tight shutoff is necessary to maintain safety.

Liquified natural gas (LNG) presents many of the same application challenges as pressurized gas, with the added element of cryogenic temperatures.

All of these applications can be adequately served with a properly selected and configured valve and actuator. Share your fluid flow control and valve challenges of all types with application specialists. The combination of your process knowledge and experience with their product application expertise will produce an effective solution.


Water Quality Analysis – Constituent Survey Part 3

industrial water quality represented as bubbles
Water quality can be a concern for process input or effluent
What we know as “water” can consist of many non-H2O components in addition to pure water. This three part series has touched on some of the constituents of water that are of interest to various industrial processors. The first installment reviewed dissolved oxygen and chloride. The second article covered sulfates, sodium, and ammonia. 

To conclude the three part series on water quality analysis in process control related industrial applications we examine silica, another element which in sufficient quantities can become a confounding variable in water for industrial use. In natural settings, silica, or silicon dioxide, is a plentiful compound. Its presence in water provides a basis for some corrosion-inhibiting products, as well as conditioners and detergents. Problems arise, however, when high concentrates of silica complicate industrial processes which are not designed to accommodate elevated levels. Specifically, silica is capable of disrupting processes related to boilers and turbines. In environments involving high temperature, elevated pressure, or both, silica can form crystalline deposits on machinery surfaces. This inhibits the operation of turbines and also interferes with heat transfer. These deposits can result in many complications, ranging through process disruption, decreased efficiency, and resources being expended for repairs.

The silica content in water used in potentially affected processes needs to be sufficiently low in order to maintain rated function and performance. Silica analyzers provide continuous measurement and monitoring of silica levels. The analyzers detect and allow mitigation of silica in the initial stages of raw material acquisition or introduction to prevent undue disruption of the process. Additionally, a technique called power steam quality monitoring allows for the aforementioned turbine-specific inhibition – related to silica conglomerates reducing efficacy and physical movement – to be curtailed without much issue. The feedwater filtration couples with a low maintenance requirement, resulting in reduced downtime of analytic sequences and a bit of increased peace of mind for the technical operator.

While silica and the other compounds mentioned in this series are naturally occurring, the support systems in place to expertly control the quality of water is the most basic requirement for harvesting one of the earth’s most precious resources for use. As a matter of fact, the identification and control of compounds in water – both entering the industrial process and exiting the industrial process – demonstrates key tenets of process control fundamentals: precision, accuracy, durability, and technological excellence paired with ingenuity to create the best outcome not just one time, but each time.