Showing posts with label MFC. Show all posts
Showing posts with label MFC. Show all posts

Thermal Mass Flow Controllers & Meters for the Harshest Environments

Thermal Mass Flow Controllers & Meters for the Harshest Environments

Thermal Mass Flow Controllers (MFCs) play a crucial role in process control applications by precisely and accurately controlling gas flow rates in various processes. They are used across multiple industries and applications to ensure stable, repeatable, and efficient process conditions. Some of the critical areas where Thermal MFCs are applied include:


  1. Semiconductor Manufacturing: In semiconductor fabrication processes, such as chemical vapor deposition (CVD) and plasma etching, MFCs control the flow of process gases to maintain accurate gas ratios and reactant concentrations, ensuring consistent wafer quality.
  2. Pharmaceutical and Biotechnology: MFCs apply in processes such as fermentation, cell culture, and gas chromatography, where they regulate the flow of gases like oxygen, carbon dioxide, and nitrogen to maintain optimal growth conditions for biological cultures or to separate and analyze various compounds.
  3. Chemical Processing: In chemical synthesis and reaction control, MFCs manage the flow of reactants and carrier gases to maintain the proper stoichiometry and reaction conditions, ensuring high-quality product yields and safe operations.
  4. Solar Cell Manufacturing: MFCs apply in processes such as thin-film deposition and chemical etching, where they control the flow of process gases to create uniform layers and achieve precise etching profiles for high-efficiency solar cells.
  5. Fuel Cell Development: In fuel cell research and manufacturing, MFCs regulate the flow of hydrogen, oxygen, and other gases to maintain optimal conditions for efficient energy production and long-lasting performance.
  6. Environmental Monitoring: MFCs are used in air quality monitoring and emissions testing systems to control the flow of calibration gases, ensuring accurate measurements and compliance with environmental regulations.
  7. Laboratory Research: In various research applications, such as mass spectrometry, gas chromatography, and flow chemistry, MFCs provide precise control over gas flow rates for accurate analysis and experimental conditions.


Thermal Mass Flow Controllers are essential components in process control systems, providing the accuracy, precision, and repeatability required for maintaining optimal process conditions and ensuring high-quality results across diverse industries and applications.


Brooks Instrument SLAMf Series Thermal Mass Flow Controller


The Brooks Instrument SLAMf Series Thermal Mass Flow Controller is an innovative and cutting-edge solution for accurately controlling and measuring gas flow in a wide range of industries and applications. This state-of-the-art flow controller meets the highest performance, reliability, and flexibility standards, ensuring seamless integration into your process control systems.


The SLAMf Series boasts several unique features that set it apart from its competitors. With its patented MultiFlo™ technology, users can easily configure the controller for multiple gases and flow ranges without sacrificing accuracy or requiring recalibration. This results in a highly versatile device capable of meeting the demands of diverse applications.


Another standout feature of the SLAMf Series is its ultra-fast response time, facilitated by the advanced sensor design and high-speed digital signal processing. It ensures that your processes are consistently controlled with precision, minimizing the risk of variations and improving overall efficiency.


The robust construction and corrosion-resistant materials used in the SLAMf Series make it suitable for even the most challenging environments. Its compact design allows easy installation in tight spaces, making it an ideal choice for various industries, such as semiconductor manufacturing, pharmaceuticals, chemical processing, and research facilities.


Typical applications for the Brooks Instrument SLAMf Series Thermal Mass Flow Controller include gas mixing and blending, gas delivery, process control, and environmental monitoring. With its unparalleled performance, adaptability, and durability, the SLAMf Series is the ultimate choice for professionals seeking the best in flow control technology.


Miller Energy, Inc.
800-631-5454
https://millerenergy.com

Basics of Mass Flow Controllers (MFCs)

Basics of Mass Flow Controllers (MFCs)

MFCs work by measuring the mass of the process fluid flowing through them and using this information to control the flow rate. They typically use a flow sensor to measure the flow rate and a control valve to regulate the flow. The control valve is usually a variable area flow meter or a valve that can be opened or closed to adjust the flow rate.

MFCs are used in a variety of applications, including chemical processing, semiconductor manufacturing, and environmental monitoring. They are often used to control the flow of gases in chemical reactions, to regulate the flow of fluids in manufacturing processes, and to monitor and control the flow of gases in environmental monitoring systems.

MFCs are highly accurate and precise and can maintain a constant flow rate over a wide range of process conditions. They are also relatively easy to install and maintain and can be integrated into various process control systems.

There are many applications for mass flow controllers (MFCs) in process control. Some examples include:

  • Chemical processing: MFCs can be used to control the flow of reactants and catalysts in chemical reactions, ensuring consistent product quality and yield.
  • Food and beverage processing: MFCs can be used to control the flow of ingredients in the production of beverages, sauces, and other food products.
  • Pharmaceutical manufacturing: MFCs can be used to control the flow of active ingredients and excipients in the production of medications.
  • Petrochemical processing: MFCs can be used to control the flow of fluids in the refining and processing of oil and natural gas.
  • Environmental control: MFCs can be used to control the flow of gases and liquids in air pollution control systems, water treatment plants, and other environmental applications.
  • Semiconductor manufacturing: MFCs can be used to control the flow of gases and liquids in the production of semiconductor devices.
  • Aerospace and defense: MFCs can be used to control the flow of gases and liquids in a variety of aerospace and defense applications, including propulsion systems, life support systems, and fuel systems.
For more information about mass flow controllers in NY, NJ, PA, DE, MD and OH contact Miller Energy, Inc. Call 800-631-5454 or visit https://millerenergy.com.

Brooks Instrument GP200 Pressure-based Mass Flow Controllers (MFC): Theory of Operation


Brooks Instrument presents the theory of operation behind their pressure-based mass flow controller (P-MFC) from their GP200 series in this video. This P-MFC has a unique design approach for enhanced process performance without the limitations of today's traditional P-MFCs. A traditional P-MFC system includes:
  • An upstream pressure transducer.
  • An upstream control valve.
  • Two individual pressure transducers.
  • Laminar flow element.
The use of an upstream valve has many disadvantages. This design requires high pressure making it sub-optimal for critical low-pressure gases and low full-scale flow rate. It also means matching the two individual pressure transducers perfectly. 

Brooks Instrument designed a patented integrated differential pressure transducer, GP200 P-MFC, to address the disadvantages. The GP200 has one actual differential transducer instead of two, eliminating the need to match the two individual pressure transducers, significantly reducing measurement uncertainty, and improving accuracy, particularly for critical low vapor pressure process gases. Its downstream valve architecture will operate at much lower inlet pressures and across a broader range of pressures. The downstream valve also minimizes the bleed-down effect and ensures that the device is insensitive to dynamic outlet conditions.

The GP200 Series P-MFC features a patented architecture that overcomes the limitations of conventional P-MFCs to provide the most precise process gas delivery even when delivering low vapor pressure process gases. It includes several unique design aspects, including an integrated differential pressure sensor coupled with a downstream valve architecture enabling the most precise process gas delivery over the industry's broadest range of operating conditions.

Since GP200 Series supports a broad range of process conditions, it can be used as a drop-in replacement and upgrade for many traditional P-MFCs and thermal MFCs. It reduces the complexity and cost of ownership of the gas delivery system because it eliminates the need for components such as pressure regulators and transducers.

GP200 FEATURES

  • True differential pressure measurement
  • Lower inlet pressure operation
  • Downstream valve architecture
  • Matched transient response
  • Zero Leak-by Control Valve
  • MultiFlo™ technology offers unparalleled flexibility—one device can be programmed for thousands of different gas and flow range configurations without removing the MFC from the gas line or compromising accuracy
  • Local display indicates flow, temperature, pressure and network address
  • DeviceNet™, EtherCAT®, RS-485 L-Protocol and analog interfaces

GP200 BENEFITS

  • By removing the requirement to match and compensate two separate pressure transducers, the GP200 differential pressure technology reduces measurement uncertainty for enhanced accuracy, repeatability and drift performance.
  • Safer fab operation at lower inlet pressures is now achievable with a P-MFC due to the GP200 differential pressure sensor that is specifically optimized for low differential pressure measurement.
  • The downstream valve architecture ensures accuracy is independent of downstream pressure, enabling flow delivery into pressures as high as 1200 Torr. The fast closing valve addresses non-productive recipe wait times, or "tail effects," seen in upstream MFC valve designs that require additional time to bleed down their internal volume of gas.
  • Ultra-fast, highly repeatable ascending and descending flow stabilization time enables tighter process control in advanced high cycle Deposition and Etch processes.
  • 100X improvement in valve shut-down
  • With MultiFlo™, MFC full scale flow range can be re-scaled down typically by a factor of 3:1 with no impact on accuracy, turndown or leak by specifications, for optimum process and inventory flexibility 
  • Convenient user display and independent diagnostic/service port aids device installation, monitoring and troubleshooting
For more information about Brooks Instrument products, contact Miller Energy, Inc. Call 800-631-5454 or visit https://millerenergy.com.

6 Reasons to Choose Brooks SLA Series Mass Flow Controllers

Brooks SLA Series Mass Flow Controllers

As firms migrate from Fieldbus to Ethernet networks, EtherNet/IP™ and PROFINET are the fastest growing digital communication technologies in industrial automation. They ship the newest industrial ethernet nodes, almost 64% of the market. EtherNet/IP ™and PROFINET enable users to collect relevant data that helps keep essential systems on track by linking devices to a single network. Information sent across EtherNet/IP™ and PROFINET networks provides better diagnostics, deviation alarms, and predictive maintenance, maximizing system uptime and lowering costs. 

As a result of this collaboration, Brooks Instrument has added EtherNet/IP™ and PROFINET protocols to its industry-leading SLA Series mass flow controllers (MFCs). The SLA5800 and SLAMf mass flow controllers support EtherNet/IP™ or PROFINET protocols and include advanced alarm and diagnostic capabilities.

Industry's Leading Ethernet Protocol Adoptions: EtherNet/IP™ and PROFINET 

The value proposition for EtherNet/IP™ and PROFINET is standard Internet and ethernet protocols. 
  • Options for star, ring, or daisy chain topologies. 
  • Operators can monitor real-time performance and network data by complying with IEEE Ethernet standards. 
  • Flexible network architecture compatible with ordinary Cat 5 cabling and routers simplifies network setup and guarantees all devices interact and exchange data. 
  • EtherNetIPTM and PROFINETTM enabled devices can provide rich data for process control, monitoring, diagnostics, and predictive maintenance.

REASON 1: OPEN, NON-PROPRIETARY, AND FUTURE-PROOF. 

Because EtherNet/IP™ and PROFINET use the Common Industrial Protocol (CIP™), support exists from a vast ecosystem of solution providers for industrial process automation. EtherNet/IP™ and PROFINET readily connect to a wide range of DCSs and PLCs, including: 
    • Allen-Bradley
    • Emerson 
    • Siemens
    • Rockwell

REASON 2: INTEROPERABLE WITH INDUSTRY-LEADING CONTROL SYSTEMS THROUGH ETHERNET/IP™ AND PROFINET

Due to the ability of contract manufacturers and end-users to use the EtherNet/IP™ and PROFINET protocols to: 
    • Cut operating costs 
    • Boost process efficiency, quality, yield, and output.

REASON 3: PLUG & PLAY INTEGRATION WITH ROCKWELL AUTOMATION (ALLEN-BRADLEY) PLCS. 

Brooks Instrument engineers worked with Rockwell Automation to provide an upgraded device profile that simplifies the setup and integration of the MFC into the Rockwell Automation (Allen-Bradley) PLC. The SLA5800 and SLAMf are now compatible with EtherNet/IP™ from renowned automation manufacturers. 

The upgraded device/add-on profile: 
    • Setup or edit any of the attribute tabs or parameters. The user determines which attributes are appropriate for their procedure. 
    • Removes the requirement for programming expertise to connect the MFC to the network.

REASON 4: SLA5800 AND SLAMF FULLY INTEGRATE ETHERNET/IP™ AND PROFINET. 

On the SLA5800 and SLAMf with EtherNet/IP™ or PROFINET, we deliver on our promise to provide value without losing equipment space. Brooks Instrument designed EtherNet/IP™ and PROFINET directly into the mass flow controller, eliminating the need for add-on adapters or modules. The SLA5800 and SLAMf MFCs completely integrate EtherNet/IP™ and PROFINET. The EtherNet/IP™ or PROFINET equipped SLA5800 and SLAMf MFCs have the same footprint as the regular SLA5800 and SLAMf. They also link to your EtherNet/IP™ or PROFINET networks, eliminating the need for additional hardware such as gateways, analog I/O cards, or bespoke cabling and wires. All you need is standard ethernet wiring to get your device running and linked to the network.

REASON 5 : EASY WEB-BASED CONFIGURATION OF ETHERNET/IP™ AND PROFINET NETWORK SETTINGS IN SLA5800 AND SLAMF.

The SLA5800 and SLAMf with EtherNet/IP™ or PROFINET have a user-friendly TCP/IP configuration. A web-based interface connects the MFC to the user's EtherNet/IP™ or PROFINET networks. Once on the network, the user can quickly identify individual MFCs, saving time if the system has several MFCs.

REASON 6: THE LATEST DIAGNOSTICS AND PREDICTIVE FUNCTIONS, SOME EXCLUSIVE TO BROOKS INSTRUMENT MFCS, ARE ENABLED BY ETHERNET/IP™ AND PROFINET PROTOCOLS. 

Intelligent and data-rich mass flow controllers, the SLA5800 and SLAMf with EtherNet/IP™ or PROFINET may improve operational efficiency in equipment automation, metrology, and maintenance. 

For example, limiting the upstream gas input pressure may affect MFC accuracy. The alarm data could be supplied to an operator via the built-in restricted flow alarm.
    
Miller Energy, Inc.
https://millerenergy.com

New White Paper from Brooks Instrument: Satisfying the Increasing Need for Flexibility in Bioprocess Equipment

Flexibility in Bioprocess Equipment

A new level of device flexibility significantly improves the flexibility of the entire bioreactor unit operation with the Brooks Instrument SLA Series Biotech mass flow controller – essential for process development and biomanufacturing. 

Learn about the key benefits of mass flow controller flexibility for your bioprocess in this new white paper: 

  • With accurate and repeatable gas flow control, you can achieve a wide usable flow range for your single-use bioreactor. 
  • With multi-gas/multi-range (MG-MR) capability, you can meet the needs of multiple applications. 
  • Utilize the concepts of cardinal ranges and range slices to allow hardware to be "reconfigured" rather than replaced. 
  • Overcome limitations in regulated and non-regulated industries by providing supporting documentation.

GET THE WHITE PAPER HERE

Miller Energy, Inc.
https://millerenergy.com


How Does a 250:1 Turndown Improve Your Bioprocess Performance?

The Brooks Instrument SLA Series Biotech Mass Flow Controller (MFC) with a 250:1 turndown delivers critical benefits to your bioprocess. This biotech-focused MFC provides the added flexibility of a higher controllable range than a traditional MFC, enabling easy scaling and reducing the total cost of ownership by requiring fewer gas lines and mass flow controllers in the system configuration. Performance of the bioprocess also improves by reducing DO noise while fewer overall components simplify system maintenance. 

For more information about Brooks Instrument products, contact Miller Energy by calling 800-631-5454, or visit https://millerenergy.com.

Understanding the Operation of Mass Flow Controllers (MFCs)

The basic construction of mass flow controllers (MFCs) consists of four main components. A body, a thermal sensor, a printed circuit board, and a magnetic control valve. As gas enters the flow body, a laminar flow element or restrictor diverts a precise portion of the gas to pass through the thermal sensor. The thermal sensor is the heart of the mass flow controller and consists of a bypass tube fitted with a heater element and two temperature sensors. As gas enters the sensor bypass tube, the upstream and downstream temperature sensors measure the temperature differential between gas entering the bypass tube and exiting it. 

When choosing an MFC supplier, consider whether the manufacturer provides zero stability specifications, also known as sensor stability, which indicates the device's ability to maintain accuracy over time. Good sensor stability ensures the MFC delivers highly accurate and consistent results with less frequent recalibration or replacements needed. A stable, precise sensor guarantees regular, precise process control. As the thermal sensor measures the change in the flow temperature,  it sends a signal to the circuit board, which interprets the data into flow output and compares it to the setpoint received from the user setpoint signal. If the setpoint, or required value, is higher than the measured value or flow output, the controller will open the control valve, letting more flow through. Suppose the setpoint is lower than the flow output. In that case, the control valve will close, decreasing flow, caused when a coil inside the magnetic control valve sends an electrical current around a valve stem, which moves the valve plunger by thousands of an inch. The circuit board is the device's brain, so pay close attention to the electronics and firmware architecture when evaluating an MFC. The MFC should have the ability to support advanced alarms and diagnostics to monitor and correct issues before the overall process is negatively affected. Check to see what built-in alarms and diagnostics are available. 

Brooks Instrument devices support flow output and additional alerts like flow totalization, valve drive, flow obstruction, and calibration. All Brooks devices are tested as complete systems to ensure robust and accurate operation and maintain calibration to international standards. 

In Pennsylvania and Ohio, contact Miller Energy to learn which Brooks Instrument solution is right for your process.

In Eastern Pennsylvania:
Phone: 610-363-6200

In Western Pennsylvania:
Phone: 412-257-0200

In Ohio:
Phone: 440-735-0100

https://millerenergy.com

White Paper: Using Digital MFC Capabilities to Improve Bioprocessing Results Miller Energy

Biomanufacturing relies on numerous pieces of equipment working in concert to produce life-altering therapeutics. The equipment relies on various subsystems to achieve the desired results. In a bioreactor, one of the most essential subsystems provides gas management for the gases necessary for cellular metabolism. At the heart of the gas management subsystem is the thermal mass flow controller (MFC), a component that precisely measures and controls the delivery of gases to the bioprocess.

This white paper, courtesy of Brooks Instrument, discusses mass flow controller data capabilities in relation to a broader biomanufacturing capital asset management.


For more information on Brooks Instrument products, contact Miller Energy. Call them at 800-631-5454 or visit their website at https://millerenergy.com.