The Design Principle of Segment Disc Control Valves


Figure 1.
The central throttle device of this control valve is two discs with segmented openings which slide on one another and seal against each other (Fig. 1). The segment discs are positioned vertically in the valve housing, facing the direction of flow. A moving disc is placed upon a rotationally fixed segment disc, the geometry of which determines the throughput capacity and characteristic curve. These two discs have the same number of segments and the moving disc is rotated via a push rod which is tangentially inserted. Consequently, the cross-section surface of the free segment passage changes when a control intervention is made.

Irrespective of the pending pressure differential, the moving segment disc is pressed onto the fixed disc via a spring pack- age. This ensures that the direction of flow is variable and that the valve can be installed in any desired location. Due to the fact that there are no metal seats with ring-shaped contact surfaces, no grooves will occur which can rapidly lead to leaks in traditional steam valves. Leakage ratios amounting to < 0.001% of the Kvs value are constantly achieved with the significantly less vulnerable surface seal.

Extremely robust segment disc valve from
Schubert & Salzer for steam distribution.
Thanks to this special design, segment disc valves are one of the few valves that are able to combine control precision and a high level of tightness, even in extreme conditions and which also experience hardly any wear.

The standard segment disc valves are available in finely graduated intervals of between DN 25 and DN 300 – and go up to DN 800 where necessary – in an intermediate flange design for nominal pressures up to PN 25. They can be used for media temperatures ranging between -60°C and +220°C (higher temperatures and nominal pressures are available on request). The robust valves have a rangeability of 60:1.

For more information, contact Miller Energy, Inc. by calling 800-631-5454, or visit their web site at https://millerenergy.com.

How to Change Loss of Signal Failure Mode on the Cashco Ranger Control Valve


This video provides step-by-step instructions on how to change the Cashco Ranger (control valve) loss of signal failure mode from air to open / fail closed to air to close/ fail open, as well as remounting and recalibrating the valve positioner.

The Cashco Ranger is one of the most popular control valves on the market. It is the most versatile, adaptable, and easily maintainable valve ever produced.

The Ranger offers over 6 different trim combinations. Trim can easily be changed in less than 5 minutes without disturbing the packing, actuator, or positioner calibration. The service area is a thread-less design, which resists corrosion or collection of chemical deposits.

A selection of 3 body materials with a broad temperature range from -325°F to +750°F makes the Ranger adaptable for use in steam, heat transfer fluids, slurries, gases, liquids, and cryogenic applications. The Ranger’s unique dual seating design provides both Class VI and backup Class IV seat leakage. And the standard patented live-loaded packing system lets you check and adjust packing without the need for specialized tools or complicated procedures.

For more information about Cashco in Metro New York, New Jersey, and Eastern Pennsylvania contact:

Miller Energy, Inc.
New York Metro and Northern NJ: 800-631-5454
Eastern PA, Southern NJ, Delaware: 888-631-5454
https://www.millerenergy.com

New Hacking Risk for US Power Grids and Oil & Gas Industries



A report released in June, from the security firm Dragos, describes a worrisome development by a hacker group named, “Xenotime” and at least two dangerous oil and gas intrusions and ongoing reconnaissance on United States power grids.

Multiple ICS (Industrial Control Sectors) sectors now face the XENOTIME threat; this means individual verticals – such as oil and gas, manufacturing, or electric – cannot ignore threats to other ICS entities because they are not specifically targeted.

The Dragos researchers have termed this threat proliferation as the world’s most dangerous cyberthreat since an event in 2017 where Xenotime had caused a serious operational outage at a crucial site in the Middle East.

The fact that concerns cybersecurity experts the most is that this hacking attack was a malware that chose to target the facility safety processes (SIS – safety instrumentation system).

For example, when temperatures in a reactor increase to an unsafe level, an SIS will automatically start a cooling process or immediately close a valve to prevent a safety accident. The SIS safety stems are both hardware and software that combine to protect facilities from life threatening accidents.

At this point, no one is sure who is behind Xenotime. Russia has been connected to one of the critical infrastructure attacks in the Ukraine.  That attack was viewed to be the first hacker related power grid outage.

This is a “Cause for Concern” post that was published by Dragos on June 14, 2019.

“While none of the electric utility targeting events has resulted in a known, successful intrusion into victim organizations to date, the persistent attempts, and expansion in scope is cause for definite concern. XENOTIME has successfully compromised several oil and gas environments which demonstrates its ability to do so in other verticals. Specifically, XENOTIME remains one of only four threats (along with ELECTRUM, Sandworm, and the entities responsible for Stuxnet) to execute a deliberate disruptive or destructive attack.

XENOTIME is the only known entity to specifically target safety instrumented systems (SIS) for disruptive or destructive purposes. Electric utility environments are significantly different from oil and gas operations in several aspects, but electric operations still have safety and protection equipment that could be targeted with similar tradecraft. XENOTIME expressing consistent, direct interest in electric utility operations is a cause for deep concern given this adversary’s willingness to compromise process safety – and thus integrity – to fulfill its mission.

XENOTIME’s expansion to another industry vertical is emblematic of an increasingly hostile industrial threat landscape. Most observed XENOTIME activity focuses on initial information gathering and access operations necessary for follow-on ICS intrusion operations. As seen in long-running state-sponsored intrusions into US, UK, and other electric infrastructure, entities are increasingly interested in the fundamentals of ICS operations and displaying all the hallmarks associated with information and access acquisition necessary to conduct future attacks. While Dragos sees no evidence at this time indicating that XENOTIME (or any other activity group, such as ELECTRUM or ALLANITE) is capable of executing a prolonged disruptive or destructive event on electric utility operations, observed activity strongly signals adversary interest in meeting the prerequisites for doing so.”

Refractometry in Oil Refining and the Petrochemical Industry: Sulfuric Acid Alkylation

Refractometers Used in Sulfuric Acid Alkylation

SULFURIC ACID, H2SO4
Typical end products

  • Alkylate (premium higher-octane gasoline blending stock for motor fuel and aviation gasoline).
Chemical curve: Sulfuric acid 88-100 R.I. per Conc wt.-% at Ref. Temp. of 20 ̊C

Refractometers Used in Sulfuric Acid Alkylation



Introduction

Motor fuel alkylation using sulfuric acid (H2SO4) or liquid hydrofluoric acid (HF) is one of the oldest catalytic processes used in petroleum refining. The purpose of the alkylation is to improve motor and aviation gasoline properties (higher octane) with up to 90 % lower emissions compared to conventional fuel usage.

The problem with HF is that the catalyst forms a hazardous air pollutant when released as a superheated liquid, while H2SO4 does not. Therefore nearly 90 % of all alky units built since 1990 have adopted the H2SO4 technology. 

The leading alkylation unit licensor, with a 90 % share of the market, is DuPont (Stratco®). Another licensor is EMRE (Exxon Mobile Research Engineering, formerly K.W. Kellogg).

Application

In the process, isobutane is alkylated with low molecular weight olefins (propylene, butylene and pentylene) in the presence of a strong acid catalyst to form alkylate (the premium higher-octane gasoline blending stock). The catalyst (sulfuric acid) allows the two-phase reaction to be carried out at moderate temperatures. The phases separate spontaneously, so the acid phase is vigorously mixed with the hydrocarbon phase to form higher molecular weight isoparaffinic compounds.

After the reactor, the mixture enters a separation vessel where the acid and hydrocarbon separate. The acid is then recycled back to the reactor.

Instrumentation and installation

Refractometers Used in Sulfuric Acid AlkylationThe K-Patents Process Refractometer PR-43-GP is installed after the settlers to continuously monitor in real-time the concentration of acid in the process.

The concentration of sulfuric acid is critical to achieve the complete consumption of isobutane. A highly variable concentration of isobutane in the feedstock upsets the sulfuric acid content in the process.

It is important to determine the proper quantity of acid that will be fed into the process. This is achieved by combining routine sample titration analysis with continuous acid monitoring by the K-Patents Process Refractometer. Real-time measurements reduce the need for sampling and laboratory analyses that cause delay in the implementation of any necessary adjustments to the acid flow.

Continuous monitoring removes the uncertainty involved between titration measurements. The K-Patents refractometer will indicate any gradual fluctuations in the acid flow, allowing precise control over efficient acid consumption and resulting in cost savings. It is also useful in preventing acid runaway, an unwanted situation commonly described as wild acid.

Acid runaway may happen when the acid strength drops below 85-87 % H2SO4. As a result, the reactions between olefins and isobutane turn into reactions of olefins only, producing polymers known as acid sludge, ASO or red oil.

The K-Patents refractometer is not affected by acid soluble oil (ASO). The refractometer indicates actual acid strength regardless of the amount of hydrocarbons present, which is essential when transferring acid emulsion. It is also an extremely useful tool in real-time process acid strength measurement during agitated conditions.

The initial acid concentration is typically 85-100 % and the temperature is 15 °C (59 °F). The benefits of the K-Patents refractometer’s continuous monitoring system include substantial cost savings due to reduced acid consumption, and smooth alkylate production without acid runaways.

The K-Patents Process Refractometer System for Alkylation Acid Measurement Consists of:

  1. The K-Patents Process Refractometer PR-43 for hazardous locations in Zone 2. or The K-Patents PR-43 Intrinsically Safe model for installations in hazardous locations up to Zone 0.
  2. Optional parts:
    1. Different flow cell options for easy sensor installation
    2. EXd enclosure for easy isolator and transmitter mounting
    3. Parts for a start up
    4. Spare parts supplied for two years of operation
    5. Start-up and commissioning service
  3. User specified tests and documentation.

Alloy C-276/ASTM C276 should be considered as wetted parts material when the acid piping flow velocity is at a maximum of 6 m/s (20 ft/s). Alloy 20 can be considered when acid piping flow velocity is at a maximum of 1.8 m/s (6 ft/s). However, it is the responsibility of the end-user to specify the appropriate material, ensuring that it is satisfactory for the intended operating requirements.

Non-sparking incentive (Ex nA) and intrinsic safety (Ex ia) approvals are available for hazardous area installations.

Always consult an applications expert with any process-critical instrumentation application. By doing so, you will ensure a successful, safe, and efficient deployment.

Miller Energy, Inc.
https://millerenergy.com
800-631-5454

Reprinted with permission from K-Patents.

Hazardous Areas: Division and Zone Classification System

Hazardous area
Hazards areas are associated with flammable
vapors or gases, ignitable fibers, and combustible dusts.
Hazardous areas refer to locations with a possible risk of explosion or fire due to dangerous atmosphere. The hazards can be associated with flammable vapors or gases, ignitable fibers, and combustible dusts.

Different hazardous area classifications exist in the North America and Europe. Generally, the National Electric Code (NEC) classifications govern hazardous areas in the US. While in Europe, hazardous area classification has been specified by the International Electrotechnical Commission (IEC).

Below is a description of the Division and Zone classification system.



CLASS
NATURE OF HAZARDOUS MATERIAL
CLASS I
Hazardous area due the presence of flammable vapors or gases in sufficient quantities to produce ignitable mixtures and cause an explosion.
Examples include natural gas and liquified petroleum.
CLASS II
Hazardous area due the presence of conductive or combustible dusts in sufficient quantities to produce ignitable mixtures and cause an explosion.
Examples include aluminum and magnesium powders.
CLASS III
Hazardous area due the presence of flammable fibers or other flying debris that collect around lighting fixtures, machinery, and other areas in sufficient quantities to produce ignitable mixtures and cause an explosion.
Examples include sawdust and flyings



Division groups hazardous areas based on the chances of an explosion due to the presence of flammable materials in the area.

DIVISION
LIKELIHOOD OF HAZARDOUS MATERIAL
DIVISION 1
Areas where there is a high chance of an explosion due to hazardous material that is present periodically, intermittently, or continuously under normal operation.
DIVISION 2
Areas where there is a low chance of an explosion under normal operation.


Group categorizes areas based on the type of flammable or ignitable materials in the environment. As per NEC guidelines, Groups A to D classify gasses while Groups E to G classify dust and flying debris.
GROUP
TYPE OF HAZARDOUS MATERIAL IN THE AREA
GROUP A
Acetylene.
GROUP B
Area contains flammable gas, liquid, or liquid produced vapor with any of the following characteristics:
  • Minimum Ignition Current (MIC) value equal to or less than 0.40
  • Maximum Experimental Safe Gap (MESG) value equal to or less than 0.45 mm
  • Combustible gas with more than 30 percent volume
Examples include hydrogen, ethylene oxide, acrolein, propylene oxide.

GROUP C
Area contains flammable gas, liquid, or liquid produced vapor with any of the following characteristics:
  • Minimum Ignition Current (MIC) value between 0.40 and 0.80
  • Maximum Experimental Safe Gap (MESG) value greater than 0.75 mm
Examples include carbon monoxide, hydrogen sulphide, ether, cyclopropane, morphline, acetaldehyde, isoprene, and ethylene.

GROUP D
Area contains flammable gas, liquid, or liquid produced vapor with any of the following characteristics:
  • Minimum Ignition Current (MIC) value greater than 0.80
  • Maximum Experimental Safe Gap (MESG) value greater than 0.75 mm
Examples include ammonia, gasoline, butane, benzene, hexane, ethanol, methane, methanol, natural gas, propane, naphtha, and vinyl chloride.

GROUP E
Area contains metal dusts such as magnesium, aluminum, chromium, bronze, titanium, zinc, and other combustible dusts whose abrasiveness, size, and conductivity present a hazard.

GROUP F
Area contains carbonaceous dusts such as charcoal, coal black, carbon black, coke dusts and others that present an explosion hazard.
GROUP G
Area contains combustible dusts not classified in Groups E and F.
Examples include starch, grain, flour, wood, plastic, sugar, and chemicals.


NOTE: This post serves only as a guide to acquaint the reader with hazardous area classifications in the USA. It is imperative to discuss your instrumentation, valve, or process equipment requirement with a qualified applications expert prior to installing any electrical device inside of any hazardous area.


Understanding How Magnetic Flowmeters Work and the Difference between AC and DC Excitation


The electromagnetic flowmeter, commonly known as the "magmeter", gets its name from the magnetic field generated within the float tube that produces a signal proportional to flow. This principle employs Faraday's Law of Electromagnetic Induction. Magnetic flowmeters are built so the direction of the magnetic field is perpendicular to the flow and the line between the electrodes is also perpendicular to the flow. As a conductive liquid flows through the flowtube, an electro-motive force is generated. The electrodes detect the electro-motive force. The electro-motive force is proportional to the flow velocity, flux density, and the meter inner diameter. The flux density of the magnetic field and the meters inner diameter are constant values, therefore the magnetic flow meter can calculate the flow velocity and volumetric flow from the electro-motive force.

The basic components of the magnetic flow meter body are:

  1. A lined flowtube (typically Teflon)
  2. Excitation coils
  3. Two electrodes mounted opposite of each other within the flowtube.

Current is applied to the coils in the magmeter to generate a magnetic field within the flow tube. As a conductive fluid flows through the meter, an electro-motive force is generated. This force is detected by the electrodes and the resulting value is converted to flowrate.

For more information on magnetic flowmeters, contact Miller Energy, Inc. by calling 800-631-5454 or by visiting https://millerenergy.com.

6 Benefits of Using Wireless Networking Systems in Industrial Applications

Wireless Networking Systems in Industrial ApplicationsWireless technologies offer great value over wired solutions. A reduction in cost is just one of the many benefits of switching to the wireless networking system. There are many benefits, including enhanced management of legacy systems that were previously not possible with a wired networking connection.

Here is an overview of some of the value-added benefits of adopting wireless networking in industrial plants.
  1. Reduced Installation Costs - Savings in installation costs is the key benefit of a wireless networking system. The cost of installing a wireless solution is significantly lower as compared to its wired counterpart. Installing a wireless network requires less planning. Extensive surveys are not required to route the wires to control rooms. This reduced installation cost is the main reason industrial setups should consider going wireless instead of having a wired networking system. 
  2. Improved Information Accuracy - Adopting wireless networking also results in improved accuracy of information. The wireless system is not prone to interferences. As a result, the system ensures consistent and timely transfer of information from one node to another. 
  3. Enhanced Flexibility - Enhanced flexibility is another reason for deploying wireless networking solutions in an industrial setting. Additional points can be awarded easily in an incremental manner. The wireless system can also integrate with legacy systems without any issues. 
  4. Operational Efficiencies - Migrating to wireless networking can help in improving operational efficiencies as well. Plant managers can troubleshoot and diagnose issues more easily. The system facilitates predictive maintenance by allowing the monitoring of remote assets. 
  5. Human Safety - Another critical factor that should influence the decision to migrate to wireless networking is the human safety factor. Wireless technologies allow safer operations, reducing exposure to harmful environments. For instance, a wireless system can be used in taking a reading and adjusting valves without having to go to the problematic area to take measurements. With wireless networking systems, readings can be taken more frequently that can help in early detection and reduction of possible incidents. 
  6. Efficient Information Transfer - Another advantage is that the time required to reach a device is reduced. This results in a more efficient transfer of information between network segments that are geographically separated. The industry wireless networking standards use IP addresses to allow remote access to data from field devices. 

For more information on wireless technologies in industrial settings, contact Miller Energy by visiting https://millerenergy.com or by calling 800-631-5454.

Selecting the Right Magnetic Level Indicator

Companies in the process industry need the ability to visually monitor liquid levels in vessels (boilers, storage tanks, separators, etc.). Traditionally, armored glass sight gauges have been used. However, many companies want an alternative to sight gauges to avoid problems such as breakage, leaks, or bursting at high pressures and temperatures. In addition, the visibility of the sight glass can be poor and often affected by moisture, corrosion, or oxidation.

Many companies are increasing the use of automation and desire a 4–20 mA, HART®, FOUNDATION® fieldbus, or other output for level—which is difficult to do with a sight glass. Magnetic level indicators (MLIs) do not have the shortcomings of glass sight gauges and are suitable for a wide variety of applications.

Orion Instruments, a Magnetrol company, has authored an excellent Magnetic Level Indicator selection guide.


Miller Energy, Inc.
https://millerenergy.com
In NY/NJ 800-631-5454
In Eastern PA 888-631-5454

Understanding How Flame Arresters Work


Flame Arrester
A Flame Arrester (or arrestor) is a passive devices with no moving parts, that allows hot gas to pass through, but stops a flame in order to prevent a larger fire or explosion.  Flame Arresters uses a wound metal ribbon type element that prevents the spread of flame from the exposed side of the arrester to the protected side of the arrester. The metal element's construction provides a matrix of engineered openings that are carefully calculated and sized to quench the flame by absorbing the flame's heat. As an explosion flame travels through a narrow metal space, heat is transmitted to the walls, energy is lost and only vapor gasses are able to pass through. Flame Arresters are used in many industries chemical, petrochemical, pulp and paper, refining, pharmaceutical, mining, power generation, and wastewater treatment.

Cashco Flame Arresters are specifically engineered to match the explosive mixtures Maximum Experimental Safe Gap, in order to ensure complete extinction of the flame. At the heart of each Cashco flame arrestor lies filter discs that consists of wound, smooth and channeled strips of stainless steel set at specific maximum experimental stage gaps the smaller the gaps are which the flame travels the more heat and energy is lost therefore the filters gap width and gap length are specifically engineered to match the explosive mixture in order to ensure complete extinction of the flame. 

To learn more about Cashco flame arrestors, contact Miller Energy, Inc. by calling 908-755-6700 or by visiting https://millerenergy.com.


The Yokogawa 4-Wire SENCOM™ SMART Sensor Platform

Analyzer FLXA402
Multi-Channel/Parameter Analyzer FLXA402
The SENCOM SMART Sensor Platform has been designed with a strong focus on Yokogawa's digital SMART sensors and provides greater insight and enhanced capabilities for more reliable data across the entire product lifetime.

Yokogawa's latest SMART sensor system enhances the operation, reliability, and credibility of online process analyzers, from the engineering and purchasing to modification and optimization, by using the latest sensing technologies and asset management tools.

The SENCOM SMART Sensor Platform has been designed with a strong focus on Yokogawa's digital SMART sensors and provides greater insight and enhanced capabilities for more reliable data across the entire product lifetime.

Digital SMART SENCOM™ Adapter, SA11
Digital SMART SENCOM™ Adapter, SA11
Yokogawa's latest SMART sensor system enhances the operation, reliability, and credibility of online process analyzers, from the engineering and purchasing to modification and optimization, by using the latest sensing technologies and asset management tools.

Simple Setup and Configuration

Analog sensors equipped with a Variopin connector and Yokogawa ID chip
Analog sensors
The SENCOM 4.0 Platform is designed with an intuitive menu structure, easy-to-understand configuration, alarm settings, and clear error-fixing information to help you make credible and reliable measurements of online process control.

Environmentally Friendly Design

Conventional SMART sensors include integrated electronics on top of an analog sensor, therefore the still operating electronics must be thrown away once the sensor has reachable the end of its lifetime, adding to global waste.

The SENCOM 4.0 platform includes a reusable SMART adapter, so only an analog sensor has to be removed when it reaches the end of its lifetime, thereby reducing waste and costs.

Easy and Efficient Maintenance

Optional Digital SMART SENCOM™ Expansion Junction Box, BA11
Optional Digital SMART SENCOM™
Expansion Junction Box, BA11
The Maintenance Manager is a data management system that allows technicians to forecast maintenance and calibration frequency, estimate the service life of the sensor, and estimate the life expectancy of the sensor.

Calibration data are stored within the memory chip of the SMART sensor using the SENCOM 4.0platform. Once the sensor is connected to the analyzer, it is possible to download or upload the latest calibration data to the FLXA402 analyzer, thus avoiding the need for field calibration.

For more information, visit this page on the Miller Energy website.

Miller Energy, Inc.
800-631-5454

Level Instruments for Tank Overfill Protection

Tank overfill incidents in recent years have resulted in loss of life and billions of dollars in damages to petroleum facilities worldwide. One of the worst incidents - the overflow of a gasoline storage tank at Buncefield Oil Depot (U.K.) - has been traced to the failure of level control to maintain containment of the flammable liquid. More common are minor spills that cause significant environmental impact and result in millions of dollars in clean-up fees and environmental agency fines.

In the wake of this incident, the American Petroleum Institute’s (API) Recommended Practice (RP) 2350, the most widely accepted guideline for overfill protection of petroleum storage tanks, has been revised. The fourth edition was published in May 2012 and combined the prescriptive standards of RP 2350 with the functional safety standards of Safety Instrumented Systems (SIS) as described in IEC 61511.

Vital to these new requirements is the application of level instrumentation as one part of a comprehensive Overfill Prevention Process (OPP).

Magnetrol, a world-leader in the design, manufacturer and application of level and flow instrumentation, has written an application document titled "Level Instruments for Tank Overfill Protection". Get your copy here.

The Yokogawa YS1700 Single Loop Controller Replaces Obsolete Moore/Siemens 353

Yokogawa YS1700

Now that entire Moore/Siemens 350 family is obsolete, are you considering upgrading to a DCS? 


Are you concerned about the cost and time for a new installation, application development and personnel training?

Is it possible that the new equipment vendor may again leave you stranded with their equipment as their core business is not industrial automation and control?

We have a better solution for you: Yokogawa and its YS1700 PID loop controller. Yokogawa has been providing industrial solutions, as their primary business, for over a century and their YS1700 will keep you off of eBay looking for spare 353 parts.

Interface in the Field: Achieving Reliable Interface Measurement to Optimize Process and Increase Uptime

Interface or multiphase level measurements exist throughout the Oil & Gas streams as well as Petrochemical. While level measurement technologies have come a long way in effectively measuring liquids and solids, multiphase level measurement continues to be the biggest challenge and opportunity that exists today to which there is no perfect technology.

However, experience has shown that process optimization and increased uptime can still be achieved in many separator applications through reliable, best-in-class, level technology.

The objective of this paper is to review interface challenges, the current technologies being utilized for interface, field experience in various applications to achieve process optimization and increased uptime, and the future of reliable interface measurement.

DOWNLOAD THE TECHNICAL PAPER HERE

Courtesy of Magnetrol and Miller Energy, Inc.
https://millerenergy.com
800-631-5454

Simplified Operation and Reduced Cost With Safety Transmitters and Switches

Series One Safety TransmittersProcess safety experts continually seek sustainable ways to improve the performance of safety critical loops, achieving risk reduction and safety goals in a cost-effective manner. Some view a reduction in complexity of safety related protocols to be a positive development. Traditional or historical approaches to deploying full blown safety systems were generally associated with great expense and high complexity, and still came up short on delivering the needed levels of risk reduction. Process control device and equipment manufacturers have responded with newer technologies and products that better address the safety needs of industrial processing.

In sensor subsystems, United Electric’s certified safety transmitter for pressure or temperature provides a less costly, simple path for process designers, instrument and control engineers, and maintenance personnel. The Series One Safety Transmitters combine several useful safety and monitoring functions into a single, easy to deploy device. Products are available for gauge pressure, differential pressure, and temperature applications. In addition to a 4-20 mA process variable output, the Series One has an embedded programmable high-capacity relay certified as a safety variable output. The Series One Safety Transmitter provides designers the option of a hard wired trip in less than 100 milliseconds, with a tenth of a percent repeatability, along with the monitoring functions of a traditional continuous analog output.

For equipment under control requiring protection, or processes where rapid excursions can initiate dangerous events, this unique pressure and temperature transmitter is addressing process safety time constraints, coupling issues with PLC and DCS units, and adding diversity to the safety instrumented function.

There is a whole lot more to learn about these "Safety right out of the box" industrial pressure and temperature safety transmitters. A product data sheet is provided below, but you can get the latest and most detailed product and application information from a specialist in industrial process measurement and control. Share your safety instrumentation challenges with them, combining your process expertise with their product application knowledge to develop effective solutions.

Learn more about the UEC One Series by visiting this page on the Miller Energy web site.




The Magnetrol ECHOTEL 962 Dual Ultrasonic Level Control


The Magnetrol ECHOTEL Model 962 is a dual point switch that can be used as a level controller, or to control pumps in an auto fill or auto empty mode. The tip sensitive lower gap performs well in aerated or foamy liquids, and can measure to within 1.4" of the vessel bottom. The rigidity of the unique flow-through upper gap allows separations of up to 125" (318 cm) between the upper and lower transducer gaps.

The Magnetrol ECHOTEL 962 offers the ultimate solution to reliable dual point liquid level measurement. This advanced switch uses pulsed signal technology for superior performance in difficult process conditions, and to provide excellent immunity from sources of electrical noise interference. Extensive self-testing of the electronics and transducer make this advanced switch suitable for use in Safety Integrity Level (SIL) 2 loops.

The ECHOTEL Model 962 is equipped with advanced diagnostics that continuously check the sensor and electronics. The diagnostics also alarm for electrical noise interference from external sources.

Ultrasonic contact switches use a pair of piezoelectric crystals that are encapsulated in epoxy at the tip of the transducer for level measurement. The crystals are made of a ceramic material that vibrates at a given frequency when subjected to an applied voltage. The transmit crystal converts the applied voltage from the electronics into an ultrasonic signal. When liquid is present in the gap, the receive crystal senses the ultrasonic signal from the transmit crystal and converts it back to an electrical signal.

Miller Energy, Inc.
https://millerenergy.com
800-631-5454

Miller Energy Acquires V-F Controls of Ohio

Miller Energy, Inc. is pleased to announce the acquisition of V-F Controls
as of January 1, 2019.


V-F Controls is a leading distributor of process Instrumentation, controls and metering equipment serving Western Pennsylvania, West Virginia and Ohio. With over 150 years of combined experience, the merger of Miller Energy and V-F Controls will offer our customers the most technical customer support and application expertise in the industry, an unparalleled product portfolio, and a continued commitment to outstanding customer service.

For all inquiries and communications:

Miller Energy, Inc. (Ohio)
555 Golden Oak Parkway
Cleveland, OH 44146
Ph: (440)735-0100
Fax: (440)735-0123