Showing posts with label liquid level. Show all posts
Showing posts with label liquid level. Show all posts

Magnetrol Model A15 Single-Stage Displacer Level Control Switches


Displacer switch operation is based upon simple buoyancy, whereby a spring is loaded with weighted displacers, which are heavier than the liquid. Immersion of the displacers in the liquid results in buoyancy force change, changing the net force acting on the spring. The spring compresses as the buoyancy force increases.

A magnetic sleeve is connected to the spring and operates within a non-magnetic barrier tube. Spring movement causes the magnetic sleeve to move into the field of a pivoted magnet, actuating a switch mechanism located outside the barrier tube. Built-in limit stops prevent over stroking of the spring, under level surge conditions.

The minimum differential band is approximately 6 inches (152 mm) in water and varies somewhat with liquid specific gravity. The maximum differential is determined by the length of the displacer suspension cable. Series A15 units are calibrated to operate over a narrow level differential band and are ideally suited for liquid level alarm applications on either high or low level.

For more information about Magnetrol Displacer Level Switches, contact Miller Energy, Inc. Call them at 800-631-5454 or visit their web site at https://millerenergy.com.

Innovative Non-Contact Radar Liquid Level Transmitter

non-contact radar level transmitter for industrail process control
Pulsar R86 non-contact radar level transmitter.
Image courtesy Magnetrol
Level measurement of liquids and solids in containers, silos, tanks and other vessels is an essential part of many processing operations. Accurate and reliable measurement of solids or liquid level contributes to operational success, as well as enhancing safety, both of which contribute to the bottom line and successful operation.

Magnetrol, globally recognized innovator in flow and level measurement, incorporates years of experience into their latest version of non-contact radar level measuring instruments. The incremental improvements contribute to easier, more flexible installation and better performance.

The R86 is a 26 GHz level transmitter applicable across a wide range of requirements in many industries. Benefits of the 26 GHz radar signal, with its smaller wavelength, are a smaller antenna and improved 1mm resolution. The narrower beam from the antenna makes positioning the transmitter less restrictive, with easier accommodation for vessel fixtures or geometry. Advanced on board diagnostics supplement the improved performance and deliver the information needed to maintain proper operation and process visualization. A broad range of antennas and mountings are available for the R86, accommodating various tank sizes, fittings, and temperatures

More information on the Pulsar R86 is provided in the brochure included below. Share your level measurement challenges and requirements with a process measurement specialist. Employ the leverage of their product application expertise to your own process knowledge and experience to develop an effective solution.


"Bubbler Method" Liquid Level Measurement

Brooks Instrument Solid Sense II pressure transmitter for industrial use
An accurate pressure transmitter
is an integral part of  a liquid level
measurement system using the
"Bubbler Method"
Courtesy Brooks Instrument
Measuring liquid level in a tank or vessel can be accomplished in a number of ways, all of which require some arrangement of instrumentation to either infer the liquid level from the measurement of a related physical property, or directly deliver the liquid level visually using a scaled gauge arrangement. One indirect method of level measurement is often referred to as the bubbler method, so named because it employs a purging gas that continually vents from the bottom of a tube extending into a tank of liquid. Through a simple apparatus, the level of a liquid can be inferred by the amount a back pressure exerted upon the gas flowing through the tube.

Probably the greatest advantage of this method of liquid level measurement is that the liquid does not contact the sensing instrumentation. The only portion of the apparatus in contact with the liquid is a tube immersed into the tank. Basically, a purge gas flows through the immersion tube and may bubble out the immersed end of the tube, which is open to allow the contained liquid to exert a hydrostatic pressure on the purge gas. The back pressure on the gas that is exerted by the liquid contained within the tank will vary directly with the depth of the liquid. The back pressure can be correlated to a liquid level. Further calculations, which would include the tank shape, dimensions, and the liquid density can provide an indication of the volume and mass of the liquid. Here is an illustration of the setup, provided courtesy of Brooks Instrument, globally recognized leader in flow and pressure measurement and control. The illustration is from Brooks' January blog article.


diagram of bubbler method tank level measurement apparatus setup
Bubbler Method Tank Level Measurement Apparatus, showing application of some Brooks Instrument devices.
Below are data sheets detailing the components used in the system to control and measure the gas flow, and measure the back pressure on the immersion tube. There are other components needed for a complete system, but they are fairly generic in nature and easily obtainable. Contact a flow and level measurement specialist with your application challenges and work with them to produce effective solutions.