Showing posts with label Eastern Pennsylvania. Show all posts
Showing posts with label Eastern Pennsylvania. Show all posts

The Valve for Abrasive and Slurry On/Off and Control Applications: The Ball Sector Valve

Ball Sector Valve

The Ball Sector Valve is intended to perform well in harsh environments such as slurries, dry media, fluids containing suspended solids, or liquids containing fibers. When combined with pneumatic and electric actuators, it is the best choice for exact control in various process industries such as mining, pulp and paper, and the chemical industry. 

The ball sector valve comprises a hemispherical shell - the ball sector - that is securely held in place in the valve body by two large bearing stems.

Ball sector valves deliver exceptional performance in demanding applications. When conventional butterfly and ball segment valves are closed, their critical sealing components are subjected to the most wear in the valve. Because of the unique design of the ball sector, the seal seals through a surface part that is less prone to wear. The ball sector valve facilitates sealing through less exposed areas of the ball sector to avoid abrasion-caused leakage. The sealing surface is not exposed to high flow velocities significantly extends the service life of ball sector valves. A self-adjusting PTFE packing with an integrated spring element seals the shaft and protects the bearing from media particles. This innovative seal design, combined with a variety of materials and finishes for the ball sector and valve seat, significantly extends the valve's life compared to other valve technologies. As a result, it is particularly suited to abrasive, high viscosity, or fiber-containing media. 

The modified equal-percentage operating characteristic (difference pressure increases as the valve closes) combined with the outstanding rangeability of 300:1 means that the valve can be used for most control tasks. The valve body's special connection ensures that the differential pressure on the valve has little effect on the actuating torque. 

Other technologies, such as a segmented ball or rotary globe valves, employ an excentric shaft, causing the ball or plug to lift up from the valve seat when the valve begins to open. As a result, sealing areas are immediately subjected to permanent wear. Particulate can become lodged between the seal ring and the ball/plug. The ball sector valve has centric and robust trunnions that allow the ball sector to maintain constant contact with the valve seat, preventing media contamination. Changes in differential pressure have no effect on the permanent actuation torque.

For more information about Schubert & Salzer products, contact Miller Energy by calling 800-631-5454, or visit https://millerenergy.com.

Cashco Sanitary / Hygienic Regulators and Control Valves

Cashco manufactures a broad line of throttling rotary and linear control valves, pressure reducing regulators, and back pressure regulators used in pharmaceutical, biopharma, life science, food & beverage, cosmetic, and semiconductor industries. 

Cashco sanitary/hygienic products include: 

Sanitary Reducing Regulators 

Model C-CS, Model C-PRV, CA1/SA1, CA4/SA4, Model 5381, Model P1, Model P2 Model P3, Model P4, Model P5, Model PA1/PL1 

Sanitary Back Pressure Regulators 

Model C-BPV, Model 3171, Model CA5/SA5, Model BA1/BL1, Model B2 

Sanitary Control Valves 

Model SCV-30, Model SCV-S 

Controllers 

Model 764P-37 

Sanitary Blanketing Valve 

Model 1088, Model 1088-BP, Model 1100 

For more information about Cashco Sanitary / Hygienic Products, contact Miller Energy. Call them at 800-631-5454 or visit their website at https://millerenergy.com​.

United Electric Controls 12 Series Pressure and Temperature Switches

United Electric Controls 12 Series Pressure and Temperature Switches

SIL 2 Certified, vibration-resistant, 316 stainless steel pressure, differential pressure and temperature switches.

The United Electric Controls 12 Series hazardous location switches are suitable for challenging applications where space is limited. Snap-action Belleville spring assemblies provide vibration resistance and extended switching life. The 316 stainless steel enclosure and the hermetically sealed switch provide robust environmental protection. Approved for use in hazardous environments, the 12 Series outperforms the competition in applications ranging from refineries to chemical plants, rotating machinery, and more.


In New York Metro and Northern NJ
Phone: 800-631-5454

In Eastern Pennsylvania and Delaware:
Phone: 610-363-6200

https://millerenergy.com

The Thermo Scientific™ AquaPro™ Multi-Input Process Analyzer

Thermo Scientific™ AquaPro™

Thermo Scientific™ AquaPro™ provides accurate, user-friendly in-line monitoring of process applications — from power generation to municipal water and wastewater.

The AquaPro™ is an on-line liquid analytical measurement platform that supports up to four sensors in an outdoor rated enclosure. The enclosure can be mounted in a ½ DIN panel, U-bolted to a pipe or mounted on a wall. The large color graphics display makes it easy to view measurements over a wide range of environmental conditions. There is a USB data port that is accessible from the front panel to transfer data, auto-configure the system setup or to upgrade the operating software with new features.

The Thermo Scientific™ AquaPro™ Multi-Input Intelligent Process Analyzer provides accurate, user-friendly in-line monitoring of process applications — from power generation to municipal water and wastewater.

The AquaPro™ Multi-Input Intelligent Process Analyzer is far more than a 4-wire multi-input meter. It is a sophisticated and highly flexible analysis platform for a wide range of process applications.

To download the AquaPro™ brochure, click this link. For more immediate information, contact Miller Energy:

In New York Metro and Northern NJ
Phone: 800-631-5454

In Eastern Pennsylvania and Delaware:
Phone: 610-363-6200

In Western Pennsylvania:
Phone: 412-257-0200

In Ohio:
Phone: 440-735-0100

The Magnetrol Eclipse 700 Guided Wave Radar (GWR) Transmitter


The Magnetrol Eclipse® Model 700 GWR is designed with the chemical processing industry in mind. It gives you the performance and durability you need to address your biggest challenges in a streamlined, versatile configuration cost-effective enough to use in a variety of common applications.

The Eclipse® 700 is a guided wave radar (GWR) transmitter that easily handles challenging situations as well as common chemical processing applications. Its streamlined configuration gives you the features you want and the diagnostics you need, at the price point you expect.

Versatile – Able to be used in a broad range of chemical processing applications

Robust – Stands up to challenging conditions like foaming, interface, and high pressure or harsh conditions

Superior SNR – Strong signal strength is ideal for low dielectric media

Reliable – True Level Measure provides industry-leading accuracy along the entire probe length

Overfill-Safe Operation – Only Eclipse transmitters are available with overfill-capable probes

Proactive Diagnostics – Saves echo curves and offers troubleshooting tips when a problem occurs

For more information, contact Miller Energy, Inc. Call them at 800-631-5454 or visit their website at https://millerenergy.com.

Magnetrol Model A15 Single-Stage Displacer Level Control Switches


Displacer switch operation is based upon simple buoyancy, whereby a spring is loaded with weighted displacers, which are heavier than the liquid. Immersion of the displacers in the liquid results in buoyancy force change, changing the net force acting on the spring. The spring compresses as the buoyancy force increases.

A magnetic sleeve is connected to the spring and operates within a non-magnetic barrier tube. Spring movement causes the magnetic sleeve to move into the field of a pivoted magnet, actuating a switch mechanism located outside the barrier tube. Built-in limit stops prevent over stroking of the spring, under level surge conditions.

The minimum differential band is approximately 6 inches (152 mm) in water and varies somewhat with liquid specific gravity. The maximum differential is determined by the length of the displacer suspension cable. Series A15 units are calibrated to operate over a narrow level differential band and are ideally suited for liquid level alarm applications on either high or low level.

For more information about Magnetrol Displacer Level Switches, contact Miller Energy, Inc. Call them at 800-631-5454 or visit their web site at https://millerenergy.com.

Process Instrumentation and Valves for the Chemical and Petrochemical Industries


Miller Energy provides process control instruments and valves designed to assist in higher quality yields, more efficient processes, and greater plant safety for chemical processing and petrochemical refining manufacturing facilities. 


The Chemical Industry


The chemical industry is key to industrial production. It transforms the raw materials of animals, vegetables and minerals into a host of products used by both the industrial and domestic customers. Lightweight and durable plastic products contribute to fuel effectiveness in transportation, energy-saving insulation material in buildings, paints and protective coatings that extend metal and wood life, soap, shampoo and detergents maintain us clean, pharmaceuticals and disinfectants protect our health. Without vital chemicals, computers and telecommunications systems could not work.

The industry has matured using local resources such as salt, coal, lime, vegetable products and animal fats. It is now a worldwide sector that mainly uses natural gas and oil fractions such as naphtha as the main raw materials. There is a strong awareness of the need to substitute fossil resources both as raw materials and for process energy with sustainable options.

The Petrochemical Manufacturing Industry


The sector produces petrochemicals which are petroleum and natural gas chemicals (organic compounds not burned as fuel). Ethylene, propylene, butylene, benzene, toluene, styrene, xylene, ethyl benzene and cumene are key products. These products are fundamental construction blocks in the manufacturing of consumer products, automotive parts and numerous sustainable and unsustainable goods. These products are fundamental construction blocks in the manufacturing of consumer products, automotive parts and numerous durable goods. This sector does not include organic compounds such as ethyl alcohol and inorganic chemicals such as carbon black.

Olefins and aromatics constitute the building blocks of a large variety of products, including solvents, detergents and adhesives. Polymers and oligomers used in plastics, resins, fibers, elastomers, lubricants and gels are built upon olefins.

Miller Energy: Chemical and Petrochemical Instrumentation and Valve Experts


Miller Energy offers a broad range of instrumentation and valves for these diverse markets. Since 1958, Miller Energy, Inc. has exceeded customers expectations in the Chemical and Petrochemical Industries by specifying and providing the highest quality instrumentation and valves. Known for unparalleled customer service and local technical support, Miller's comprehensive line of pressure, temperature, level, flow and analytical products are available now and ready to solve your most challenging chemical and petrochemical applications.

Contact the Miller Energy office in your area by visiting this web page, or call 800-631-5454 for further assistance.

The Design Principle of Segment Disc Control Valves


Figure 1.
The central throttle device of this control valve is two discs with segmented openings which slide on one another and seal against each other (Fig. 1). The segment discs are positioned vertically in the valve housing, facing the direction of flow. A moving disc is placed upon a rotationally fixed segment disc, the geometry of which determines the throughput capacity and characteristic curve. These two discs have the same number of segments and the moving disc is rotated via a push rod which is tangentially inserted. Consequently, the cross-section surface of the free segment passage changes when a control intervention is made.

Irrespective of the pending pressure differential, the moving segment disc is pressed onto the fixed disc via a spring pack- age. This ensures that the direction of flow is variable and that the valve can be installed in any desired location. Due to the fact that there are no metal seats with ring-shaped contact surfaces, no grooves will occur which can rapidly lead to leaks in traditional steam valves. Leakage ratios amounting to < 0.001% of the Kvs value are constantly achieved with the significantly less vulnerable surface seal.

Extremely robust segment disc valve from
Schubert & Salzer for steam distribution.
Thanks to this special design, segment disc valves are one of the few valves that are able to combine control precision and a high level of tightness, even in extreme conditions and which also experience hardly any wear.

The standard segment disc valves are available in finely graduated intervals of between DN 25 and DN 300 – and go up to DN 800 where necessary – in an intermediate flange design for nominal pressures up to PN 25. They can be used for media temperatures ranging between -60°C and +220°C (higher temperatures and nominal pressures are available on request). The robust valves have a rangeability of 60:1.

For more information, contact Miller Energy, Inc. by calling 800-631-5454, or visit their web site at https://millerenergy.com.

How to Change Loss of Signal Failure Mode on the Cashco Ranger Control Valve


This video provides step-by-step instructions on how to change the Cashco Ranger (control valve) loss of signal failure mode from air to open / fail closed to air to close/ fail open, as well as remounting and recalibrating the valve positioner.

The Cashco Ranger is one of the most popular control valves on the market. It is the most versatile, adaptable, and easily maintainable valve ever produced.

The Ranger offers over 6 different trim combinations. Trim can easily be changed in less than 5 minutes without disturbing the packing, actuator, or positioner calibration. The service area is a thread-less design, which resists corrosion or collection of chemical deposits.

A selection of 3 body materials with a broad temperature range from -325°F to +750°F makes the Ranger adaptable for use in steam, heat transfer fluids, slurries, gases, liquids, and cryogenic applications. The Ranger’s unique dual seating design provides both Class VI and backup Class IV seat leakage. And the standard patented live-loaded packing system lets you check and adjust packing without the need for specialized tools or complicated procedures.

For more information about Cashco in Metro New York, New Jersey, and Eastern Pennsylvania contact:

Miller Energy, Inc.
New York Metro and Northern NJ: 800-631-5454
Eastern PA, Southern NJ, Delaware: 888-631-5454
https://www.millerenergy.com

Selecting the Right Magnetic Level Indicator

Companies in the process industry need the ability to visually monitor liquid levels in vessels (boilers, storage tanks, separators, etc.). Traditionally, armored glass sight gauges have been used. However, many companies want an alternative to sight gauges to avoid problems such as breakage, leaks, or bursting at high pressures and temperatures. In addition, the visibility of the sight glass can be poor and often affected by moisture, corrosion, or oxidation.

Many companies are increasing the use of automation and desire a 4–20 mA, HART®, FOUNDATION® fieldbus, or other output for level—which is difficult to do with a sight glass. Magnetic level indicators (MLIs) do not have the shortcomings of glass sight gauges and are suitable for a wide variety of applications.

Orion Instruments, a Magnetrol company, has authored an excellent Magnetic Level Indicator selection guide.


Miller Energy, Inc.
https://millerenergy.com
In NY/NJ 800-631-5454
In Eastern PA 888-631-5454

Level Instruments for Tank Overfill Protection

Tank overfill incidents in recent years have resulted in loss of life and billions of dollars in damages to petroleum facilities worldwide. One of the worst incidents - the overflow of a gasoline storage tank at Buncefield Oil Depot (U.K.) - has been traced to the failure of level control to maintain containment of the flammable liquid. More common are minor spills that cause significant environmental impact and result in millions of dollars in clean-up fees and environmental agency fines.

In the wake of this incident, the American Petroleum Institute’s (API) Recommended Practice (RP) 2350, the most widely accepted guideline for overfill protection of petroleum storage tanks, has been revised. The fourth edition was published in May 2012 and combined the prescriptive standards of RP 2350 with the functional safety standards of Safety Instrumented Systems (SIS) as described in IEC 61511.

Vital to these new requirements is the application of level instrumentation as one part of a comprehensive Overfill Prevention Process (OPP).

Magnetrol, a world-leader in the design, manufacturer and application of level and flow instrumentation, has written an application document titled "Level Instruments for Tank Overfill Protection". Get your copy here.

Brooks Instrument Sponsoring $2000 Engineering Scholarship

CLICK THIS LINK TO LEARN MORE

Brooks Instrument is committed to the next generation of engineers. Accordingly, they have established a $2,000 scholarship for a qualified student enrolled in an engineering program at an accredited college or university. Learn more here (https://www.brooksinstrument.com/en/about-us/scholarship).

Detailed Look at the Yokogawa YS100 Series as a Replacement for the Obsolete Siemens 353

This video is a thorough presentation detailing why and how the Yokogawa YS1000 Series is the best replacement for the obsolete Siemens/Moore 353 controller. It is composed of a series of presentation slides - hit the pause button to focus on any single slide.

New Jersey: 908-755-6700 
Pennsylvania: 610-363-6200

How to Select a Pressure Switch

UEC One Series Switch Transmitter Hybrid
UEC One Series Switch Transmitter Hybrid
Reprinted with permission from United Electric Controls

Pressure switches are widely used by many industries and within many applications. The basic function of a pressure switch is to detect a pressure change and convert it into an electrical signal function – typically on/off or off/on. Pressure switches may be of electro-mechanical or electronic/solid-state design (see our ONE Series); and while each may have its advantages, arriving at the correct pressure switch for your application is the same.

Set Point & Deadband


Application set point (sp) is the desired value reached at rising or falling pressure at which the micro-switch changes electrical states. Depending upon the pressure switch function, the micro-switch could be wired to open (turn something OFF)  or close (turn something ON) when set point is achieved, thereby triggering an event such as an alarm, equipment shutdown, or powering up secondary equipment. Ideally, the set point should fall into the mid 50% of the pressure switch range for best performance including repeatability and long life. On an electro-mechanical pressure switch, set point may be adjusted internally or externally either through blind adjustment or reference dial. An electronic pressure switch would have internal or external adjustment via a key pad and digital display or a handheld programmer.
Deadband graph

Deadband (DB) is the on-off differential required to reset the micro-switch. This value may be fixed or adjustable with an electro-mechanical switch and may be up to 100% adjustable on an electronic switch.

Deadband may be an important factor to consider depending upon the application requirements.

System Pressure


Knowing your normal and maximum system pressures will help in selecting a pressure switch with appropriate minimum and maximum operating parameters. Once your set point is established, other factors to consider are vacuum and/or surge pressure that could affect switch operation. This would involve maximum working pressure, over range pressure, and proof pressure specifications of a pressure switch. The relationship between set point and system pressure has a direct effect on switch performance and life.

Electrical Considerations


UEC 100 Series Pressure Switch
UEC 100 Series Pressure Switch
Micro-switches are available in a variety of configurations. The most common for electro-mechanical pressure switches is 15A, 480VAC SPDT (single pole, double throw). The advantage of a SPDT micro-switch is that it offers wiring flexibility to either open or close on pressure change. Other micro-switches available include 1A with gold contacts, useful when working with a PLC, or at the upper end, 30A when switching certain high voltage heaters or motors. Adjustable micro-switches help with deadband adjustment. A DPDT (double pole, double throw) micro-switch would provide two simultaneous functions off of one micro-switch. If a low-high limit alarm and shutdown were required, there are pressure switches that include two SPDT micro-switches that are independently settable.

An electronic pressure switch would use solid-state relays to change states. Like an electro-mechanical switch, the electronic switch can be programmed to open or close on rising or falling pressure. There are different capacities for switching voltage and current depending upon the application requirements.

Process Media and Wetted Parts


The pressure connection and sensor are known as wetted parts since they come into direct contact with the process media. Sensor material is either elastomer (i.e. Buna-N, Teflon®) or metallic (i.e. Brass, Stainless Steel) with metallic or composite pressure connections. The process media must be compatible with the wetted parts material. Process media temperature should also be considered as each of the different wetted materials would have differing operating properties.

Pressure Switch Mounting


If the unit is to be installed directly onto the process, there are many methods of installation.
Typically a 1/8”, 1/4”, or 1/2” NPT (national pipe thread taper) connection is used with a mating
fitting to secure the pressure switch to the process. There are also straight threaded (SAE, BSPT)
connections, flush mount connections, and sanitary connections. The pressure switch may be
mounted directly in the process line using the threaded connection, a manifold, or flange; or the
enclosure could be bolted to a mounting plate or other plane to secure it. If heavy vibration is
present, you may choose to use a remote diaphragm seal with the pressure switch. The diaphragm
seal mates with the process connection while the pressure switch enclosure is mounted securely
away from the vibration. 

Process Environment


It is important to know what type of environment the pressure switch would be installed in – hazardous or ordinary location; indoors or outdoors; exposed to salt air; inside a control panel; in high ambient temperature. These are just some of the factors to consider so the right enclosure type is chosen. Enclosure types come in many shapes, sizes, and materials. They also conform to various industry and third-party approval standards. Electronic switches can be used to replace electro-mechanical switches when SIL is needed for safety applications.  There are also electro-mechanical pressure switches without enclosures; typically used in OEM, non-hazardous locations where the environment is benign.

With careful consideration of all the factors listed above, choosing a pressure switch is a snap. If you are at all unsure, please contact your local United Electric Distributor or visit the UE Product Selector to find your pressure switch.

Miller Energy, Inc. - Expertly Serving These Industries in the Mid-Atlantic Region

Miller Energy is a Manufacturer's Representative and Distributor of Industrial Instrumentation and Process Control Equipment with offices in South Plainfield, NJ and Exton, PA. In business since Since 1958, Miller's success is attributable to their commitment to exceeding their customers expectations and a comprehensive line of "best-of-breed" measurement, control, and communication products. With a strong reputation for unparalleled customer service and expert local technical support,  Miller Energy continues to demonstrate strong growth in the Mid-Atlantic region.


https://millerenergy.com
908-755-6700 NJ
610-363-6200 PA

Radiometric, Non-contact Level Measurement for Liquids or Solids

Radiometric level detection
Radiometric level detection
(RONAN)
Radiometric level measurement, using a very low gamma level source, is designed to deliver outstanding performance in a wide range of difficult applications and process conditions for both liquids and bulk solids which include the most dangerous materials such as caustic, toxic, corrosive, explosive, and carcinogenic irrespective of their viscosity and temperature.

These level gauges meet “As-Low-As-Reasonably-Achievable” (ALARA) guidelines. Source activity is customized depending on vessel and process parameters such as diameter, wall thickness, material, and measurement span to ensure optimum sensitivity, economy and safety while keeping the source activity to a minimum.

Non-contact level
Sources and Detector Mounted
External to Vessel
An exclusive “Radiation Low Level” (RLL) source holder uses up to 100 times less gamma energy than comparable gauges, and is the only source holder recognized by the NRC to be so safe that it does not require the stringent documentation, training or handling procedures of other systems.

Operation

Radiometric level measurement provides a safe and efficient, non-contact method to measure liquids or solids in harsh process environments. Each system consists of a gamma source, detector and microprocessor.

  • The gamma source, typically mounted external to the vessel emits energy through the vessel walls collimated in a direction towards the detector mounted on the opposite side of the vessel. The gamma energy reaches the detector when the vessel is empty. As the process level rises in the vessel, the gamma energy reaching the detector will decrease in an inversely proportional relationship to the level. 
  • The detector measures the level of energy and sends a proportional signal to the microprocessor. 
  • The microprocessor linearizes, filters, and correlates this signal to a level measurement. 

The entire system is mounted external to the vessel and can be easily installed and maintained while the process is running ... without expensive down time, vessel modifications or chance of accidental release.

Applications
Low Level Source and Detector
Low Level Source and Detector
Mounted External to Vessel
  • Radiometric level detection
  • Low Level Source and Detector
  • Mounted External to Vessel
  • Solids or Liquid Measurement 
  • Measurement Not Affected by: 
  • Internal Obstructions. i.e. Agitators Extreme Process Temperatures 
  • Caustic Processes 
  • Violent Product Flow 
  • Sterile Process 
  • Changing Process 
  • Variable Product Flow 
  • Automatic Compensation for Vapor Density Changes 
  • Automatic Compensation for Foam or Gasses 
  • Automatic Compensation for Process Build-Up 
  • Detectors Contoured to the Shape of Vessels 
  • Upgrade Utilizing Existing Sources
Features and Benefits 
  • Accurately Measures the Most Complex Processes 
  • Solid Crystal or Flexible Scintillating Fill- Fluid 
  • Excellent Measurement Reliability due to Proprietary Filtering Technology 
  • Level Detection of Multiple Interfaces 
  • Low Maintenance / No Component Wear 
  • Auto-Calibration

For more information in Eastern Pennsylvania, New Jersey, Metro New York or Delaware contact:
Miller Energy by visiting https://millerenergy.com or by calling 908-755-6700 in New Jersey, or 610-363-6200 in Pennsylvania.

Industrial Refractometers Used in Process Control

Refractometer Pharmaceutical Use
Refractometer for pharmaceutical use (K-Patents).
Part physics, part material science and part chemistry, refractometry is the process which measures the composition of known substances by means of calculating their respective refractive indexes (RI). RIs are evaluated via a refractometer, a device which measures the curve, or refraction, resulting when the wavelength of light moves from the air into and through a tested substance. The unitless number given by the refractometer, usually between 1.3000 and 1.7000, is the RI. The composition of substances is then determined when the RI is compared to a standard curve specific to the material of the substance.

Process refractometers provide the analysis to quickly, reliably, and very accurately identify a sample and determine it's concentration and purity levels. They measure the refractive index and temperature of flowing liquids, and apply mathematical functions to determine the concentration of dissolved solids.

Common industrial refractometer applications are:
  • Calculating beverages’ amount of sugar dissolved is water.
  • In commercial food applications such as juice production or tomato processing, refractometers are used to measure degrees Brix (Tthe Brix scale relates refractive index to sugar concentration, and is a key way to maintain consistency).
  • In the pharmaceutical industry, process refractometers are used to monitor and control concentration levels during supersaturation, a critical process in crystallization.
  • In pulp and paper production, process refractometers for measuring dissolved solids in black and green liquor during the chemical recovery process.
Equipment manufacturers have developed numerous refractometer configurations tailored to specific each use and application. Each has a set of features making it the advantageous choice for its intended application. Product specialists can be invaluable sources of information and assistance to potential refractometer users seeking to match the best equipment to their application or process.

For more information on industrial refractometers, contact Miller Energy by visiting https://millerenergy.com or by calling 908-755-6700 in New Jersey or 610-363-6200 in Pennsylvania.

Laboratory Flame Testing of Industrial Pressure Gauges: Wika vs. Competitor

Laboratory flame testing of industrial pressure gauges. Manufacturer Wika versus a competitor. The test is structured in (3) stages: a 10 second burn, a 30 second burn, and then a one minute burn. The Wika gauge maintains its reading, does not melt, and does not continue to burn.

https://millerenergy.com
New Jersey 908-755-6700
Pennsylvania 610-363-6200

Flow & Pressure Instrumentation for Biopharmaceuticals & Life Sciences

Flow & Pressure Instrumentation for Biopharmaceuticals & Life SciencesProducing biopharmaceuticals is one of the world’s most demanding manufacturing processes.

Brooks Instrument’s mass flow and pressure control technology helps maximize cell culture yields and control bioprocess costs. Their flow
and pressure controllers set global standards for reliability, repeatability and long-term stability.

Brooks Instrument mass flow controllers (MFCs) satisfy key biotechnology research and production requirements:
  • Tight control of DO and pH during experiments and production
  • NO unplanned downtime due to high cost of losing a batch or experiment
  • Ability to rapidly diagnose and resolve issues with bioreactors or fermentation equipment
  • Cost-effective method for adhering to regulatory requirements
  • Excellent technical support and rapid response for equipment service