Showing posts with label Ohio. Show all posts
Showing posts with label Ohio. Show all posts

Thermal Mass Flow Controllers & Meters for the Harshest Environments

Thermal Mass Flow Controllers & Meters for the Harshest Environments

Thermal Mass Flow Controllers (MFCs) play a crucial role in process control applications by precisely and accurately controlling gas flow rates in various processes. They are used across multiple industries and applications to ensure stable, repeatable, and efficient process conditions. Some of the critical areas where Thermal MFCs are applied include:


  1. Semiconductor Manufacturing: In semiconductor fabrication processes, such as chemical vapor deposition (CVD) and plasma etching, MFCs control the flow of process gases to maintain accurate gas ratios and reactant concentrations, ensuring consistent wafer quality.
  2. Pharmaceutical and Biotechnology: MFCs apply in processes such as fermentation, cell culture, and gas chromatography, where they regulate the flow of gases like oxygen, carbon dioxide, and nitrogen to maintain optimal growth conditions for biological cultures or to separate and analyze various compounds.
  3. Chemical Processing: In chemical synthesis and reaction control, MFCs manage the flow of reactants and carrier gases to maintain the proper stoichiometry and reaction conditions, ensuring high-quality product yields and safe operations.
  4. Solar Cell Manufacturing: MFCs apply in processes such as thin-film deposition and chemical etching, where they control the flow of process gases to create uniform layers and achieve precise etching profiles for high-efficiency solar cells.
  5. Fuel Cell Development: In fuel cell research and manufacturing, MFCs regulate the flow of hydrogen, oxygen, and other gases to maintain optimal conditions for efficient energy production and long-lasting performance.
  6. Environmental Monitoring: MFCs are used in air quality monitoring and emissions testing systems to control the flow of calibration gases, ensuring accurate measurements and compliance with environmental regulations.
  7. Laboratory Research: In various research applications, such as mass spectrometry, gas chromatography, and flow chemistry, MFCs provide precise control over gas flow rates for accurate analysis and experimental conditions.


Thermal Mass Flow Controllers are essential components in process control systems, providing the accuracy, precision, and repeatability required for maintaining optimal process conditions and ensuring high-quality results across diverse industries and applications.


Brooks Instrument SLAMf Series Thermal Mass Flow Controller


The Brooks Instrument SLAMf Series Thermal Mass Flow Controller is an innovative and cutting-edge solution for accurately controlling and measuring gas flow in a wide range of industries and applications. This state-of-the-art flow controller meets the highest performance, reliability, and flexibility standards, ensuring seamless integration into your process control systems.


The SLAMf Series boasts several unique features that set it apart from its competitors. With its patented MultiFlo™ technology, users can easily configure the controller for multiple gases and flow ranges without sacrificing accuracy or requiring recalibration. This results in a highly versatile device capable of meeting the demands of diverse applications.


Another standout feature of the SLAMf Series is its ultra-fast response time, facilitated by the advanced sensor design and high-speed digital signal processing. It ensures that your processes are consistently controlled with precision, minimizing the risk of variations and improving overall efficiency.


The robust construction and corrosion-resistant materials used in the SLAMf Series make it suitable for even the most challenging environments. Its compact design allows easy installation in tight spaces, making it an ideal choice for various industries, such as semiconductor manufacturing, pharmaceuticals, chemical processing, and research facilities.


Typical applications for the Brooks Instrument SLAMf Series Thermal Mass Flow Controller include gas mixing and blending, gas delivery, process control, and environmental monitoring. With its unparalleled performance, adaptability, and durability, the SLAMf Series is the ultimate choice for professionals seeking the best in flow control technology.


Miller Energy, Inc.
800-631-5454
https://millerenergy.com

Process Mass Spectrometers

Process Mass Spectrometers

Process mass spectrometers are versatile analytical instruments that accurately identify and quantify chemical compounds in a sample based on their mass-to-charge ratios. Mass spectrometers are crucial in monitoring and regulating various processes in industrial process control applications to ensure product quality, safety, and efficiency. Here, we will list applications for mass spectrometers in process control.


  1. Process monitoring and optimization: Mass spectrometers continuously monitor the concentrations of various components in a process stream, providing real-time data on the composition of raw materials, intermediates, and final products. By analyzing these data, process engineers can quickly identify deviations from the desired process conditions and take corrective actions to optimize the process, reduce waste, improve energy efficiency, and improve overall process control.
  2. Leak detection and control: Mass spectrometers can detect and quantify leaks in industries where hazardous or volatile gases are involved. They can rapidly identify the presence of specific gases and quantify their concentrations, enabling prompt corrective actions to minimize the risk of accidents, environmental damage, and product contamination.
  3. Quality control and assurance: Mass spectrometers analyze product samples at various stages of the manufacturing process to ensure that they meet specified quality standards. They can identify and quantify impurities, contaminants, or undesired by-products that may affect the final product's performance, safety, or shelf life. This information is vital for maintaining product consistency and complying with regulatory requirements.
  4. Reaction monitoring and kinetic studies: In chemical and pharmaceutical industries, mass spectrometers can study reaction kinetics and monitor the progress of chemical reactions in real time. By determining the concentrations of reactants, intermediates, and products, researchers can better understand reaction mechanisms, optimize reaction conditions, and improve the overall process efficiency.
  5. Environmental monitoring and emissions control: Mass spectrometers are employed to monitor emissions from industrial processes, ensuring that they comply with environmental regulations. They can detect and quantify trace levels of pollutants, such as volatile organic compounds (VOCs), greenhouse gases, or particulate matter, helping industries to reduce their environmental impact and comply with legal requirements.
  6. Catalyst evaluation and development: Catalysts are crucial in many industrial processes, and mass spectrometers can evaluate their performance by monitoring the reaction products and intermediates. This information is valuable for developing and optimizing new catalysts, ensuring that they are efficient, selective, and stable under the required operating conditions.


In summary, mass spectrometers are indispensable tools in industrial process control applications. Their ability to provide rapid, accurate, and sensitive analyses of process streams, emissions, and products makes them invaluable for monitoring, optimization, and quality control. As a result, they play a significant role in ensuring the safety, efficiency, and sustainability of various industries.



9 Reasons Why Industrial Control Valves Fail

9 Reasons Why Industrial Control Valves Fail

9 Reasons Why Industrial Control Valves Fail


1) Improper Sizing

To properly size an industrial control valve, take the following steps:
  • Determine the process flow rate, pressure drop, and fluid properties.
  • Select the type of control valve based on the process conditions and application requirements.
  • Choose a valve with the correct Cv (flow coefficient) for the desired flow rate and pressure drop.
  • Consider the operating temperature, pressure, and any special requirements (such as high-temperature, corrosive, or abrasive fluids).
  • Check that the valve meets all applicable industry standards.
Always consult a control valve manufacturer or an engineer with expertise in control valves for a more accurate and detailed evaluation.

2) Improper Installation

To ensure the proper installation of an industrial control valve, take the following steps:
  • Verify that all valve components are correct and undamaged.
  • Check that the piping and valve are correctly aligned and supported.
  • Use the proper gaskets and seals to prevent leakage.
  • Check the actuator mounting and connection to the valve body.
  • Make sure the control wiring is correct and properly connected.
  • Test the valve's operation and adjust as necessary.
  • Flush the piping system to remove any debris before installation.
  • Follow all relevant safety procedures and guidelines.
It is critical to consult with the valve manufacturer's installation manual and guidelines and have a professional trained in industrial control valve installation conduct the installation process.

3) Material Incompatibility

Material compatibility refers to the ability of a material to resist chemical attack, degradation, and corrosion from the process fluid. Material compatibility in industrial control valve installation is crucial because it ensures the valve's long-term reliability and prevents premature failure.

Ensure proper material compatibility by following these steps:
  • Identify the chemical composition of the process fluid and any potential impurities.
  • Determine the operating temperature and pressure of the fluid.
  • Select valve components made of materials compatible with the fluid and conditions.
  • Consider the effect of any potential impurities on the valve components.
  • Choose materials that have sufficient corrosion resistance to prevent degradation.
You need to consult a control valve manufacturer or a materials engineer for expert guidance on material selection for a specific application.

4) Erosion/Corrosion

Erosion and corrosion affect industrial control valves because they can lead to valve failure and reduce the valve's lifespan. Erosion occurs when fluid velocity in the valve causes physical wear on the valve components. Corrosion is the chemical degradation of the valve material due to exposure to harsh chemicals or corrosive environments.

Mitigate erosion and corrosion with the following measures:
  • Using corrosion-resistant materials such as stainless steel, Hastelloy, or titanium.
  • Applying protective coatings like nickel plating, hard-chroming, or ceramic coatings.
  • Regular inspection and maintenance to detect signs of wear and corrosion and replace parts before failure occurs.
  • Using proper fluid handling practices, such as filtration, to remove abrasive particles from the process media.
  • Installing isolation devices like piping spools, strainers, or blow-off valves to protect the valve.
These measures help ensure reliable operation and extend the life of industrial control valves.

5) Overloading

Overloading refers to a situation in which an industrial control valve is subjected to a load or stresses greater than its design capacity, causing damage or failure. Overloading occurs due to various factors, including improper sizing, incorrect application, or changes in operating conditions.

Prevent overloading with the following measures:
  • Proper sizing of the valve based on the operating conditions and fluid characteristics.
  • Use a suitable type of valve for the specific application, such as a high-pressure control valve for high-pressure systems.
  • Regularly monitor operating conditions and fluid characteristics to detect changes and adjust the valve settings accordingly.
  • Maintain the valve according to the manufacturer's instructions and replace worn or damaged parts.
  • Use a safety relief valve or bypass system to relieve excess pressure and protect the control valve.
By following these measures, industrial control valves can be protected from overloading and failure, ensuring reliable operation and system safety.

6) Excessive Wear

Excessive wear on industrial control valves can significantly impact their performance. The following are some ways excessive wear can affect the performance of control valves:
  • Reduced accuracy: Worn components can cause the valve to become misaligned or damaged, affecting its ability to control fluid flow accurately.
  • Increased leakage: Worn seals, seats, or other components can cause increased fluid leakage, affecting the overall performance of the valve.
  • Decreased flow control: Worn components can alter the flow characteristics of the valve, causing it to become less responsive or to control flow inaccurately.
  • Increased pressure drop: Excessive wear can cause an increase in the pressure drop across the valve, reducing system efficiency and increasing energy costs.
  • Increased maintenance requirements: Wear and damage to the valve components can result in increased maintenance needs, adding to operational costs and reducing reliability.
Prevent excessive wear of the control valves by regularly inspecting, maintaining, and replacing them as needed to ensure optimal performance and reliability.

7) Improper Maintenance

Improper maintenance of industrial control valves can have a significant impact on their performance, including:
  • Reduced accuracy: Neglecting to perform regular calibrations or making incorrect adjustments to the valve can lead to reduced accuracy in flow control.
  • Increased leakage: Failure to replace worn or damaged seals and gaskets can result in increased fluid leakage, affecting the valve's overall performance.
  • Decreased flow control: Improper cleaning or repairs can alter the flow characteristics of the valve, reducing its ability to control flow accurately.
  • Increased pressure drop: Neglecting to clean or replace dirty or clogged components can increase pressure drop across the valve, reducing system efficiency and inflating energy costs.
  • Increased downtime: Improper maintenance can lead to valve failure, resulting in increased downtime and decreased productivity.
It is essential to follow the manufacturer's instructions and perform regular, scheduled maintenance to ensure optimal performance and reliability of industrial control valves.

8) Process Contamination

Process contamination in industrial control valves can harm operation by clogging or eroding internal parts, causing valve malfunction or failure. It can also lead to decreased process efficiency and increased maintenance costs. Prevent process contamination by implementing the following steps:
  • Proper material selection: Using appropriate materials that are resistant to the specific process fluid and contaminants is vital.
  • Regular maintenance: Regular cleaning and replacement of internal components can help prevent a build-up of contaminants.
  • Installing filtration systems: Installing filters upstream from control valves can help remove contaminants before they reach the valve.
  • Installing protection devices: Installing protective devices, such as strainers or deflectors, can help prevent larger particles from entering the valve and causing harm.
  • Implementing best practices: Following best practices, such as avoiding sudden changes in flow rate, can help prevent process contamination and prolong valve life.
9) Aging or Fatigue Failure of Valve Components

Aging or fatigue failure of valve components can have a significant impact on industrial control valves, leading to the following issues:
  • Reduced efficiency: Worn-out or degraded components can cause control valves to operate less efficiently, leading to increased energy costs and decreased production.
  • Increased downtime: Aging or fatigued components can result in more frequent breakdowns, causing increased downtime and maintenance costs.
  • Decreased reliability: Over time, components can weaken and fail, reducing the reliability of control valves and increasing the risk of failure.
  • Leakage: Aging or fatigued components can result in leaks, causing loss of process fluid and potentially causing harm to the environment.
  • Decreased safety: Worn-out or degraded components can increase the risk of valve failure, which can have profound safety implications in some industrial processes.
It is essential to regularly inspect and maintain control valves to detect and replace aging or fatigued components to prevent these types of failures and maintain efficient, reliable, and safe operation.

Miller Energy, Inc.
800-631-5454
https://millerenergy.com

Basics of Mass Flow Controllers (MFCs)

Basics of Mass Flow Controllers (MFCs)

MFCs work by measuring the mass of the process fluid flowing through them and using this information to control the flow rate. They typically use a flow sensor to measure the flow rate and a control valve to regulate the flow. The control valve is usually a variable area flow meter or a valve that can be opened or closed to adjust the flow rate.

MFCs are used in a variety of applications, including chemical processing, semiconductor manufacturing, and environmental monitoring. They are often used to control the flow of gases in chemical reactions, to regulate the flow of fluids in manufacturing processes, and to monitor and control the flow of gases in environmental monitoring systems.

MFCs are highly accurate and precise and can maintain a constant flow rate over a wide range of process conditions. They are also relatively easy to install and maintain and can be integrated into various process control systems.

There are many applications for mass flow controllers (MFCs) in process control. Some examples include:

  • Chemical processing: MFCs can be used to control the flow of reactants and catalysts in chemical reactions, ensuring consistent product quality and yield.
  • Food and beverage processing: MFCs can be used to control the flow of ingredients in the production of beverages, sauces, and other food products.
  • Pharmaceutical manufacturing: MFCs can be used to control the flow of active ingredients and excipients in the production of medications.
  • Petrochemical processing: MFCs can be used to control the flow of fluids in the refining and processing of oil and natural gas.
  • Environmental control: MFCs can be used to control the flow of gases and liquids in air pollution control systems, water treatment plants, and other environmental applications.
  • Semiconductor manufacturing: MFCs can be used to control the flow of gases and liquids in the production of semiconductor devices.
  • Aerospace and defense: MFCs can be used to control the flow of gases and liquids in a variety of aerospace and defense applications, including propulsion systems, life support systems, and fuel systems.
For more information about mass flow controllers in NY, NJ, PA, DE, MD and OH contact Miller Energy, Inc. Call 800-631-5454 or visit https://millerenergy.com.

What is Refractometer Critical Angle Measurement?

What is Refractometer Critical Angle Measurement?

Vaisala refractometers use the critical angle measurement principle. A refractometer's three essential components are a light source, a prism, and an image detector. 


The light source sends rays to the prism and process interface at different angles. Rays with a steep angle partly reflect at the image detector and partially refract at the process. Low-angle rays reflect entirely on the detector. The angle from which the total reflection starts is called the critical angle. 

The CCD camera detects a bright and dark field corresponding to partly reflected and totally reflected light. The position of the borderline between the bright and the dark area correlates with the critical angle, which is a function of the refractive index and correlates with the solution's concentration.

A built-in temperature sensor measures the temperature T on the interface of the process liquid. The sensor converts the refractive index nD and temperature T into concentration units. 

Vaisala K-PATENTS refractometer can indicate different scales, for example, Brix, liquid density, or concentration by weight. The diagnostics program ensures that the measurement is reliable.

Miller Energy, Inc.
800-631-5454

Industrial Automated Ball Valves from Miller Energy

Industrial Automated Ball Valves from Miller Energy

Oil & Gas, Refining, Petrochemical, Chemical Processing, Pulp & Paper, Mining, Transportation, Food and Beverage, Pharmaceuticals, Marine, HVAC, Power, and other industries rely on Miller Energy for high-performance ball valve automation.

Miller Energy supplies automated ball valve assemblies ranging from 1/2 inch to 48 inch, providing first-rate quality, exceptional performance, and long-term reliability. Before shipping from the factory, every valve assembly is inspected and tested by the valve automation shop. 

A-T Controls valve automation center creates high quality ball valve assemblies, significantly reducing the time you need to spend on the project site. Automation professionals get extensive training, and each valve assembly, pneumatic or electric, is put through a battery of functional tests before being sent to customers. All valve assemblies go through a process of inspection and validation utilizing quality assurance documentation that is numbered and labeled. On request, we can provide you with assembly drawings, actuator size verification, and datasheets.

With access to inventory and highly skilled teams, Miller Energy delivers the customer solutions required to meet most valve and actuator needs while giving both a reasonable price and the industry's quickest turnaround. 

https://millerenergy.com
Phone: 800-631-5454

6 Reasons to Choose Brooks SLA Series Mass Flow Controllers

Brooks SLA Series Mass Flow Controllers

As firms migrate from Fieldbus to Ethernet networks, EtherNet/IP™ and PROFINET are the fastest growing digital communication technologies in industrial automation. They ship the newest industrial ethernet nodes, almost 64% of the market. EtherNet/IP ™and PROFINET enable users to collect relevant data that helps keep essential systems on track by linking devices to a single network. Information sent across EtherNet/IP™ and PROFINET networks provides better diagnostics, deviation alarms, and predictive maintenance, maximizing system uptime and lowering costs. 

As a result of this collaboration, Brooks Instrument has added EtherNet/IP™ and PROFINET protocols to its industry-leading SLA Series mass flow controllers (MFCs). The SLA5800 and SLAMf mass flow controllers support EtherNet/IP™ or PROFINET protocols and include advanced alarm and diagnostic capabilities.

Industry's Leading Ethernet Protocol Adoptions: EtherNet/IP™ and PROFINET 

The value proposition for EtherNet/IP™ and PROFINET is standard Internet and ethernet protocols. 
  • Options for star, ring, or daisy chain topologies. 
  • Operators can monitor real-time performance and network data by complying with IEEE Ethernet standards. 
  • Flexible network architecture compatible with ordinary Cat 5 cabling and routers simplifies network setup and guarantees all devices interact and exchange data. 
  • EtherNetIPTM and PROFINETTM enabled devices can provide rich data for process control, monitoring, diagnostics, and predictive maintenance.

REASON 1: OPEN, NON-PROPRIETARY, AND FUTURE-PROOF. 

Because EtherNet/IP™ and PROFINET use the Common Industrial Protocol (CIP™), support exists from a vast ecosystem of solution providers for industrial process automation. EtherNet/IP™ and PROFINET readily connect to a wide range of DCSs and PLCs, including: 
    • Allen-Bradley
    • Emerson 
    • Siemens
    • Rockwell

REASON 2: INTEROPERABLE WITH INDUSTRY-LEADING CONTROL SYSTEMS THROUGH ETHERNET/IP™ AND PROFINET

Due to the ability of contract manufacturers and end-users to use the EtherNet/IP™ and PROFINET protocols to: 
    • Cut operating costs 
    • Boost process efficiency, quality, yield, and output.

REASON 3: PLUG & PLAY INTEGRATION WITH ROCKWELL AUTOMATION (ALLEN-BRADLEY) PLCS. 

Brooks Instrument engineers worked with Rockwell Automation to provide an upgraded device profile that simplifies the setup and integration of the MFC into the Rockwell Automation (Allen-Bradley) PLC. The SLA5800 and SLAMf are now compatible with EtherNet/IP™ from renowned automation manufacturers. 

The upgraded device/add-on profile: 
    • Setup or edit any of the attribute tabs or parameters. The user determines which attributes are appropriate for their procedure. 
    • Removes the requirement for programming expertise to connect the MFC to the network.

REASON 4: SLA5800 AND SLAMF FULLY INTEGRATE ETHERNET/IP™ AND PROFINET. 

On the SLA5800 and SLAMf with EtherNet/IP™ or PROFINET, we deliver on our promise to provide value without losing equipment space. Brooks Instrument designed EtherNet/IP™ and PROFINET directly into the mass flow controller, eliminating the need for add-on adapters or modules. The SLA5800 and SLAMf MFCs completely integrate EtherNet/IP™ and PROFINET. The EtherNet/IP™ or PROFINET equipped SLA5800 and SLAMf MFCs have the same footprint as the regular SLA5800 and SLAMf. They also link to your EtherNet/IP™ or PROFINET networks, eliminating the need for additional hardware such as gateways, analog I/O cards, or bespoke cabling and wires. All you need is standard ethernet wiring to get your device running and linked to the network.

REASON 5 : EASY WEB-BASED CONFIGURATION OF ETHERNET/IP™ AND PROFINET NETWORK SETTINGS IN SLA5800 AND SLAMF.

The SLA5800 and SLAMf with EtherNet/IP™ or PROFINET have a user-friendly TCP/IP configuration. A web-based interface connects the MFC to the user's EtherNet/IP™ or PROFINET networks. Once on the network, the user can quickly identify individual MFCs, saving time if the system has several MFCs.

REASON 6: THE LATEST DIAGNOSTICS AND PREDICTIVE FUNCTIONS, SOME EXCLUSIVE TO BROOKS INSTRUMENT MFCS, ARE ENABLED BY ETHERNET/IP™ AND PROFINET PROTOCOLS. 

Intelligent and data-rich mass flow controllers, the SLA5800 and SLAMf with EtherNet/IP™ or PROFINET may improve operational efficiency in equipment automation, metrology, and maintenance. 

For example, limiting the upstream gas input pressure may affect MFC accuracy. The alarm data could be supplied to an operator via the built-in restricted flow alarm.
    
Miller Energy, Inc.
https://millerenergy.com

Miller Energy Is a Premier Manufacturer's Representative and Distributor of Process Instrumentation, Valves and Process Equipment

Miller Energy, Inc.

Miller Energy is an Industrial Instrumentation and Process Control Equipment Manufacturer's Representative and Distributor. We have been committed to exceeding our customers' expectations by providing unrivaled customer service and local technical support since 1958. We currently offer the most comprehensive range of measurement, control, and communication solutions in the industry.


Miller Energy provides a wide range of instrumentation and control solutions to many markets, including refining, water treatment, chemical production, and food and beverage. Miller's products are useful in applications that require measuring, controlling, monitoring, and analyzing pressure, temperature, level, flow, pH, O2, CO2, and various other process variables.


Miller Energy comprises the most technically savvy salespeople in the industry. All Field Sales Engineers are factory trained on all of our product lines. All Inside Sales/Technical Support Engineers are responsible for a specific product line and support our entire customer base. Intelligent geographic product distribution provides the most timely delivery for greater customer satisfaction.


Miller Energy has four office locations:


  • The South Plainfield, NJ, corporate headquarters serves Northern New Jersey, New York, and Fairfield County, Connecticut. 
  • The Exton, PA office serves Southern New Jersey, Eastern Pennsylvania, Delaware, and Maryland. 
  • The Pittsburgh, PA location serves Western Pennsylvania, Western Maryland, and West Virginia. 
  • The Cleveland, OH office serves Ohio. 


Miller Energy, Inc.

https://millerenergy.com


In New York Metro and Northern NJ

Phone: 800-631-5454


In Eastern Pennsylvania and Delaware:

Phone: 610-363-6200


In Western Pennsylvania:

Phone: 412-257-0200


In Ohio:

Phone: 440-735-0100

Vaisala K Patents Refractometers - Refractive Index Measurement


Vaisala K-PATENTS Process Refractometers provide in-line solids and density measurement  for liquids for process control and industrial automation. 

Vaisala K-PATENTS Process Refractometers are commonly used to determine the liquid concentration or density. This measurement has been an essential element in the processing industries for over a century in all sectors, including refining, paper production, pharmaceuticals, food and beverage, and chemical manufacturing. , 

The measurement principle is critical angle measurement. The refractometer has three main components: a light source, a prism, and an image detector.  

The light source sends light rays to the prism and process interface at different angles. Rays with a steep angle are partly reflected in the image detector and partially refracted to the process. The angle from which the total reflection starts is called the critical angle. A CCD camera detects a bright field and a dark field corresponding to partly reflected light and totally reflected light. The borderline position between the bright and the dark area correlates with the critical angle which is a function of the refractive index and therefore correlates with the concentration of the solution.

For more information in New Jersey, New York, Pennsylvania, Delaware, Ohio, West Virginia and Western Maryland contact Miller Energy. Call 800-631-5454 or visit https://millerenergy.com.

New White Paper from Brooks Instrument: Satisfying the Increasing Need for Flexibility in Bioprocess Equipment

Flexibility in Bioprocess Equipment

A new level of device flexibility significantly improves the flexibility of the entire bioreactor unit operation with the Brooks Instrument SLA Series Biotech mass flow controller – essential for process development and biomanufacturing. 

Learn about the key benefits of mass flow controller flexibility for your bioprocess in this new white paper: 

  • With accurate and repeatable gas flow control, you can achieve a wide usable flow range for your single-use bioreactor. 
  • With multi-gas/multi-range (MG-MR) capability, you can meet the needs of multiple applications. 
  • Utilize the concepts of cardinal ranges and range slices to allow hardware to be "reconfigured" rather than replaced. 
  • Overcome limitations in regulated and non-regulated industries by providing supporting documentation.

GET THE WHITE PAPER HERE

Miller Energy, Inc.
https://millerenergy.com


Calibration of a 4-20 mA Transmitter in a Hazardous Area Using a Portable Calibrator

This video demonstrates how to calibrate a 4-20 mA transmitter in a hazardous environment using a portable calibrator, in this case, the WIKA CPH7000 Ex.

Before you do calibrations in a hazardous (Ex) space, you must be aware of several things. There are many levels of dangerous areas, as well as various levels of calibrating equipment to choose. A hazardous location includes or may contain combustible substances (whether indoors or outdoors). It could be a liquid, gas, vapor, or dust that is combustible. Depending on the hazardous area classification, a flammable substance may be present all of the time, a particular percentage of the time, or just in specific instances, such as during shutdowns or accidents. 

In the best of circumstances, calibration can be a challenging task. Doing so in an area with a risk of explosion raises the complexity level to a new level, requiring the technician to have the necessary training and equipment. The WIKA CPH7000 Ex process calibrator is a precise, easy-to-use portable instrumentation calibrator that tests process transmitters in hazardous areas.

For more information WIKA products, or about instrument calibration in general, contact Miller Energy, Inc.

Miller Energy, Inc.
800-631-5454
https://millerenergy.com

Pulse Burst Radar Level Transmitters

Pulse Burst Radar Level Transmitters

Pulse Burst Radar sends short bursts of energy to the surface of a liquid. The time it takes for a signal to be reflected off the liquid surface is measured by ultra-high-speed timing circuitry. 

Filtering out false reflections and other background noises is accomplished through sophisticated signal processing. The precise level is then calculated by taking tank height and additional configuration information into account. Because the circuitry is highly energy-efficient, no duty cycling is required, as with other radar devices. This enables the device to track rapid level changes of up to 4.5 m/minute (180"/min). 

Magnetrol uses Pulse Burst Radar for Radar level measurement rather than frequency modulated continuous wave (FMCW), which is today's more common operational technology. Pulse Burst Radar operates in the time domain and does not necessitate the complex and costly processing required for FMCW. 

Pulse Burst Radar is more efficient at sorting through extraneous echoes and selecting the one reflected by the actual level because echoes are discrete and separated in time. Pulse Burst Radar also has excellent averaging characteristics, vital in applications where the return signal is affected by the factors described in "Don't Forget the 3 D's of Radar" below. 

Unlike actual pulse devices, which send a single sharp (fast rise-time) waveform of wide-band energy, Pulse Burst Radar sends out short bursts of 6 GHz or 26 GHz energy and measures the transit time of the signal reflected from the liquid surface. The following equation is used to calculate distance:

Distance = C x Transit Time/2, (where C = Speed of Light)

The level value is then calculated by taking tank height and other configuration information into account. The sensor reference point – the bottom of an NPT thread, top of a BSP thread, or face of a flange – is the exact reference point for distance and level calculations. 

Remember the 3 D's of Radar 

Three fundamental conditions influence radar applications: 

  • The process medium's dielectric; 
  • The application's distance, or measuring range; and 
  • A wide range of disturbances can weaken or distort the radar signal. 

Low dielectric media can weaken radar's return signal, reducing the effective measurement range of a device. Pulse Burst Radar provides accurate measurements even in low dielectrics. However, when the dielectric is extremely low, as with liquid gas, fuels, and solvents, or when boiling and/or flashing can occur, Guided Wave Radar (GWR) may be the better choice in radar technology. 

The distance, or measurement range, of Pulse Burst Radar, is determined by the antenna used, the dielectric constant of the medium, and the presence of signal interference. Turbulence, foam, false targets (interior tank obstructions causing false echoes), multiple reflections (reflections off the tank roof), and a frequent level change rate can all weaken, scatter, or multiply radar signals. Excessively high or extremely low liquid levels can also be problematic. 

The Processing of Signals 

Because radar exhibits interference effects similar to those seen in light, the signal processing function is critical. The quality of a device's signal processing is what distinguishes today's cutting-edge radar transmitters from the rest. 

Pulse Burst Radar extracts accurate levels from false targets and background noise through its sophisticated signal processing capabilities. Because pulse burst radar circuitry is highly energy-efficient, no duty cycling is required to achieve effective measurement. As a result, Pulse Burst Radar can track high rates of change that would be impossible to track with other loop-powered radar transmitters. Although Pulse Burst Radar has a robust false target recognition and rejection routine, proper installation significantly minimizes false target reflections. 

Antennas 

The radar signal is transmitted and received by the antenna on the transmitter. Each antenna's maximum measuring range is primarily determined by dielectric constants and the degree of turbulence. Horn antennas can measure dielectric media as low as 1.4, whereas rod antennas have a minimum dielectric of 1.7. 

Benefits 

Pulse Burst Radar measures a wide range of media accurately and reliably in a wide range of process conditions, from calm product surfaces and water-based media to turbulent surfaces and aggressive hydrocarbon media. As a non-contact device, Pulse Burst Radar is immune to the complications that can occur when a probe comes into contact with the process media, such as coating from high viscosity media or corrosive attack from aggressive chemicals. Given the cost of extended probe lengths, the greater the measuring range, the more radar proves to be the cost-effective solution. Temperatures, pressures, the presence of vapors, and air movement within a vessel's free space have little effect on the radar. Specific gravity, conductivity, and dielectric constant changes do not affect measurement accuracy. The lack of moving parts in a 100% electronic instrument translates into low maintenance costs, and, as a two-wire, loop-powered device, power requirements and installation are greatly simplified.

Miller Energy, Inc.
https://millerenergy.com

In New York Metro and Northern NJ
Phone: 800-631-5454

In Eastern Pennsylvania and Delaware:
Phone: 610-363-6200

In Western Pennsylvania:
Phone: 412-257-0200

In Ohio:
Phone: 440-735-0100

Magnetic Level Indicators and Controls for Industrial Process Applications

Magnetic Level Indicators and Controls

Fluid process control operations frequently involve the storage of liquids in a vessel or tank. The continuous and accurate indication of the liquid level within the tank is an important data point for process control decision making and safety. Several tank level measurement methods and instrument types are available, each with its own set of characteristics that may be advantageous for a specific installation. 

A tank liquid level indicator's selection criteria often include: 

  • Does the process require direct or indirect measurement of level?
  • What level measurement accuracy and reliability is needed?
  • What is the tank shape, regular or irregular?
  • Are there concerns with media compatibility with measurement device materials of construction?
  • How often will maintenance or calibration be needed?
  • Is the instrument capable of operating at the process temperature and pressure for the application?
  • Does the application require local display and visibility or remote?
  • Are control signals from the level indication required? What type and transmission protocol?
  • What kind of redundancy and safety devices, such as additional switches, are needed?

Magnetically coupled liquid level indicators, or MLIs, are widely used in the process industry. They are accurate, consistent, and reliably indicate liquid level. These units are completely sealed and do not require any maintenance. MLIs also eliminate the vapor or liquid emission issues that plague sight and gauge glasses. 

Most Compelling Reasons for Using MLI's:

  • Level measurement is continuous. 
  • Operable without the use of electricity. 
  • Regardless of tank shape or profile, they provide a direct visual tank fluid level indication. 
  • They are available in wide operating temperature and pressure ranges. 
  • MLI construction is resistant to breakage.
  • A variety of materials are available to accommodate corrosive media. 
  • Externally mounted measuring indicators, switches, and transmitters do not come into contact with the process media. 
  • MLI's provide a continual operation that requires little maintenance. 
  • The level indication is viewable from a greater distance than glass sight gauges. 
  • With a single instrument, it is possible to measure large fluid level ranges.

Magnetic level indicators have a strong presence in tank liquid level measurement and should be considered a candidate for meeting those application requirements. There are numerous options for customizing the level indicator for each application.  Work with your local Sales Engineer,  a specialist in level measurement, about your application challenges and positive outcomes. 

For more information, contact your local Miller Energy, Inc. regional office:

South Plainfield, NJ Office
Serving Northern NJ, New York, and Fairfield County Connecticut
South Clinton Ave.
South Plainfield, NJ 07080
Phone: 908-755-6700
Toll Free: 800-631-5454
Fax: 908-755-0312

Exton, PA Office
Serving Southern NJ, Eastern PA, Delaware and Central and Eastern Maryland
505 Gordon Drive
Exton, PA 19341
Phone: 610-363-6200
Toll Free: 888-631-5454
Fax: 610-524-7254

Cleveland, OH Office
Serving Ohio
555 Golden Oak Parkway
Cleveland, OH 44146
Phone: 440-735-0100
Fax: 440-735-0123

Selecting Variable Area Flow Meters for Process Flow Measurement

Variable Area Flow Meters

Many industrial processes involve the movement of fluid product components, either liquid or gaseous, through pipes. Because processing is about control, an input to the facility's management, measurement, or data logging centers will answer the query, "How much is going through that pipe?" 

In the industrial process measurement and control industry, there are several ways for quantifying flow, each with unique characteristics that may be useful under certain operating situations. All flow measuring methods are indirect because the actual measurement is of a character influenced predictably by a change in the media flow. Flow measurement is a critical component that, when paired with other fluid properties, is used to calculate the total mass of a fluid passing through the measurement site. 

The variable area meter, commonly known as a rotameter and VA meter, is a tried and true flow measuring device that operates by creating an equilibrium between an upward force created by fluid motion and a downward force, gravity. A tapering glass or metal tube encases a specifically shaped float, also known as a shaped weight, in the device. VA meters must be positioned vertically, with the media flowing upward from the bottom, so that the gravity force required for functioning is correctly aligned with the flow direction. As fluid flows upward via the precisely tapered tube, drag is created on the float enclosed within the tube, pulling it upward. As the float rises, the open space between the float and the tube wall expands, causing the fluid velocity and drag force to decrease. The flow velocity within the tube will cause the weight to climb for any given flow volume until the drag force generated by the flow reaches equilibrium with the countervailing power of gravity on the float. The tube and float are well designed, allowing for an immediate indication of flow volume.

Variable area flowmeters have the following operating characteristics: 

  • There is no need for external power or fuel for functioning. 
  • Vertical installation is required, with flow arriving at the bottom. 
  • Meters are calibrated to a given chemical and temperature. 
  • The operation is stable and has a modest pressure drop. 
  • For operation, constant gravity is required. 
  • Flow rate can be read locally using a meter or a scale inscribed on the tube. 
  • The visibility of the float through the medium is required for unit flow readings using glass tubes. 
  • For industrial flow metering equipment, accuracy is relatively low. 
  • Inexpensive upkeep, simple construction, and low comparative cost.

Brooks Instrument, a world-renowned maker of flow, pressure, and level measurement equipment, created a brief paper highlighting the parameters to consider when specifying a VA meter and how each aspect influences the unit's performance. The description is realistic and straightforward to grasp. It is suggested reading for all process stakeholders who want to improve their flow measuring skills.

For more information about variable area flow meters contact Miller Energy. Call 800-631-5454 or visit https://millerenergy.com.

How Does a 250:1 Turndown Improve Your Bioprocess Performance?

The Brooks Instrument SLA Series Biotech Mass Flow Controller (MFC) with a 250:1 turndown delivers critical benefits to your bioprocess. This biotech-focused MFC provides the added flexibility of a higher controllable range than a traditional MFC, enabling easy scaling and reducing the total cost of ownership by requiring fewer gas lines and mass flow controllers in the system configuration. Performance of the bioprocess also improves by reducing DO noise while fewer overall components simplify system maintenance. 

For more information about Brooks Instrument products, contact Miller Energy by calling 800-631-5454, or visit https://millerenergy.com.

The Thermo Scientific™ AquaPro™ Multi-Input Process Analyzer

Thermo Scientific™ AquaPro™

Thermo Scientific™ AquaPro™ provides accurate, user-friendly in-line monitoring of process applications — from power generation to municipal water and wastewater.

The AquaPro™ is an on-line liquid analytical measurement platform that supports up to four sensors in an outdoor rated enclosure. The enclosure can be mounted in a ½ DIN panel, U-bolted to a pipe or mounted on a wall. The large color graphics display makes it easy to view measurements over a wide range of environmental conditions. There is a USB data port that is accessible from the front panel to transfer data, auto-configure the system setup or to upgrade the operating software with new features.

The Thermo Scientific™ AquaPro™ Multi-Input Intelligent Process Analyzer provides accurate, user-friendly in-line monitoring of process applications — from power generation to municipal water and wastewater.

The AquaPro™ Multi-Input Intelligent Process Analyzer is far more than a 4-wire multi-input meter. It is a sophisticated and highly flexible analysis platform for a wide range of process applications.

To download the AquaPro™ brochure, click this link. For more immediate information, contact Miller Energy:

In New York Metro and Northern NJ
Phone: 800-631-5454

In Eastern Pennsylvania and Delaware:
Phone: 610-363-6200

In Western Pennsylvania:
Phone: 412-257-0200

In Ohio:
Phone: 440-735-0100

GT1600 Industrial Glass Tube Variable Area Flowmeter (Rotameter) for Liquids & Gases

As one of the pioneering manufacturers in variable area (VA) flow meter (rotameter) technology, Brooks Instrument has created a diverse and proven portfolio of gas flow meters, installed and used across virtually every industry.

The NEW Brooks Instrument GT1600 Series industrial design is ideal for the toughest applications. 

GT1600 Features

  • Configurable to retro-fit GT10xx, GT130x and Full-View
  • 360 degrees rotatable viewing angle
  • High quality materials for safety, in- and outdoor durability
  • 316 stainless steel frame
  • Polycarbonate safety shield
  • 316/316L dual certified stainless steel process fittings
  • Alarms for high- and low flow (optional for all flow ranges, either at time of
  • order,or as add-on in the field)
  • Flanged or threaded connections, available horizontal and vertical
  • Panel- and wall mount options
  • Easy in-situ maintenance: Clean or replace tube and float without removal from
  • the process piping
  • Adjust the scale to compensate for process variation
  • Optional integral needle valve

For more information about the Brooks Instrument GT1600 contact Miller Energy, Inc. Call them at 800-631-5454 or visit their website at https://millerenergy.com.

The Thermo Scientific™ Prima PRO Online Mass Spectrometer & Process Gas Analyzer

The Thermo Scientific™ Prima PRO online mass spectrometer & process gas analyzer meets many challenging process applications in the petrochemical, iron, and steel, and biotechnology industries. The Prima PRO online mass spectrometer delivers faster, more complete, and highly reliable lab-quality online gas composition analysis. It features a rugged, fault-tolerant design that ensures availability that exceeds 99.7%, a simplified maintenance procedure, and an auto-tune capability to facilitate ongoing operation and enhance productivity.

For more information about the Thermo Scientific™ Prima PRO in Metro New York, New Jersey, Pennsylvania, Delaware, and Northern Ohio, contact Miller Energy, Inc.  Call them at 800-631-5454 or visit their website at https://millerenergy.com.

Understanding the Operation of Mass Flow Controllers (MFCs)

The basic construction of mass flow controllers (MFCs) consists of four main components. A body, a thermal sensor, a printed circuit board, and a magnetic control valve. As gas enters the flow body, a laminar flow element or restrictor diverts a precise portion of the gas to pass through the thermal sensor. The thermal sensor is the heart of the mass flow controller and consists of a bypass tube fitted with a heater element and two temperature sensors. As gas enters the sensor bypass tube, the upstream and downstream temperature sensors measure the temperature differential between gas entering the bypass tube and exiting it. 

When choosing an MFC supplier, consider whether the manufacturer provides zero stability specifications, also known as sensor stability, which indicates the device's ability to maintain accuracy over time. Good sensor stability ensures the MFC delivers highly accurate and consistent results with less frequent recalibration or replacements needed. A stable, precise sensor guarantees regular, precise process control. As the thermal sensor measures the change in the flow temperature,  it sends a signal to the circuit board, which interprets the data into flow output and compares it to the setpoint received from the user setpoint signal. If the setpoint, or required value, is higher than the measured value or flow output, the controller will open the control valve, letting more flow through. Suppose the setpoint is lower than the flow output. In that case, the control valve will close, decreasing flow, caused when a coil inside the magnetic control valve sends an electrical current around a valve stem, which moves the valve plunger by thousands of an inch. The circuit board is the device's brain, so pay close attention to the electronics and firmware architecture when evaluating an MFC. The MFC should have the ability to support advanced alarms and diagnostics to monitor and correct issues before the overall process is negatively affected. Check to see what built-in alarms and diagnostics are available. 

Brooks Instrument devices support flow output and additional alerts like flow totalization, valve drive, flow obstruction, and calibration. All Brooks devices are tested as complete systems to ensure robust and accurate operation and maintain calibration to international standards. 

In Pennsylvania and Ohio, contact Miller Energy to learn which Brooks Instrument solution is right for your process.

In Eastern Pennsylvania:
Phone: 610-363-6200

In Western Pennsylvania:
Phone: 412-257-0200

In Ohio:
Phone: 440-735-0100

https://millerenergy.com