Showing posts with label Metro New York. Show all posts
Showing posts with label Metro New York. Show all posts

Brooks Instrument GP200 Pressure-based Mass Flow Controllers (MFC): Theory of Operation


Brooks Instrument presents the theory of operation behind their pressure-based mass flow controller (P-MFC) from their GP200 series in this video. This P-MFC has a unique design approach for enhanced process performance without the limitations of today's traditional P-MFCs. A traditional P-MFC system includes:
  • An upstream pressure transducer.
  • An upstream control valve.
  • Two individual pressure transducers.
  • Laminar flow element.
The use of an upstream valve has many disadvantages. This design requires high pressure making it sub-optimal for critical low-pressure gases and low full-scale flow rate. It also means matching the two individual pressure transducers perfectly. 

Brooks Instrument designed a patented integrated differential pressure transducer, GP200 P-MFC, to address the disadvantages. The GP200 has one actual differential transducer instead of two, eliminating the need to match the two individual pressure transducers, significantly reducing measurement uncertainty, and improving accuracy, particularly for critical low vapor pressure process gases. Its downstream valve architecture will operate at much lower inlet pressures and across a broader range of pressures. The downstream valve also minimizes the bleed-down effect and ensures that the device is insensitive to dynamic outlet conditions.

The GP200 Series P-MFC features a patented architecture that overcomes the limitations of conventional P-MFCs to provide the most precise process gas delivery even when delivering low vapor pressure process gases. It includes several unique design aspects, including an integrated differential pressure sensor coupled with a downstream valve architecture enabling the most precise process gas delivery over the industry's broadest range of operating conditions.

Since GP200 Series supports a broad range of process conditions, it can be used as a drop-in replacement and upgrade for many traditional P-MFCs and thermal MFCs. It reduces the complexity and cost of ownership of the gas delivery system because it eliminates the need for components such as pressure regulators and transducers.

GP200 FEATURES

  • True differential pressure measurement
  • Lower inlet pressure operation
  • Downstream valve architecture
  • Matched transient response
  • Zero Leak-by Control Valve
  • MultiFlo™ technology offers unparalleled flexibility—one device can be programmed for thousands of different gas and flow range configurations without removing the MFC from the gas line or compromising accuracy
  • Local display indicates flow, temperature, pressure and network address
  • DeviceNet™, EtherCAT®, RS-485 L-Protocol and analog interfaces

GP200 BENEFITS

  • By removing the requirement to match and compensate two separate pressure transducers, the GP200 differential pressure technology reduces measurement uncertainty for enhanced accuracy, repeatability and drift performance.
  • Safer fab operation at lower inlet pressures is now achievable with a P-MFC due to the GP200 differential pressure sensor that is specifically optimized for low differential pressure measurement.
  • The downstream valve architecture ensures accuracy is independent of downstream pressure, enabling flow delivery into pressures as high as 1200 Torr. The fast closing valve addresses non-productive recipe wait times, or "tail effects," seen in upstream MFC valve designs that require additional time to bleed down their internal volume of gas.
  • Ultra-fast, highly repeatable ascending and descending flow stabilization time enables tighter process control in advanced high cycle Deposition and Etch processes.
  • 100X improvement in valve shut-down
  • With MultiFlo™, MFC full scale flow range can be re-scaled down typically by a factor of 3:1 with no impact on accuracy, turndown or leak by specifications, for optimum process and inventory flexibility 
  • Convenient user display and independent diagnostic/service port aids device installation, monitoring and troubleshooting
For more information about Brooks Instrument products, contact Miller Energy, Inc. Call 800-631-5454 or visit https://millerenergy.com.

Industrial Automated Ball Valves from Miller Energy

Industrial Automated Ball Valves from Miller Energy

Oil & Gas, Refining, Petrochemical, Chemical Processing, Pulp & Paper, Mining, Transportation, Food and Beverage, Pharmaceuticals, Marine, HVAC, Power, and other industries rely on Miller Energy for high-performance ball valve automation.

Miller Energy supplies automated ball valve assemblies ranging from 1/2 inch to 48 inch, providing first-rate quality, exceptional performance, and long-term reliability. Before shipping from the factory, every valve assembly is inspected and tested by the valve automation shop. 

A-T Controls valve automation center creates high quality ball valve assemblies, significantly reducing the time you need to spend on the project site. Automation professionals get extensive training, and each valve assembly, pneumatic or electric, is put through a battery of functional tests before being sent to customers. All valve assemblies go through a process of inspection and validation utilizing quality assurance documentation that is numbered and labeled. On request, we can provide you with assembly drawings, actuator size verification, and datasheets.

With access to inventory and highly skilled teams, Miller Energy delivers the customer solutions required to meet most valve and actuator needs while giving both a reasonable price and the industry's quickest turnaround. 

https://millerenergy.com
Phone: 800-631-5454

The Magnetrol-AMETEK Genesis™ Multiphase Detector


Multiphase level measurements exist throughout process industries. They are especially significant in the oil & gas and petrochemical sectors due to the value of effectively separating water and hydrocarbon.

While level instrumentation has come a long way in measuring liquids of all varieties, multiphase level measurement is many times the most significant challenge and opportunity today.

The Genesis™ Multiphase Detector from Magnetrol measures multiple phases in applications with thick and dynamic emulsion layers:
  • Vapor phase
  • Total level (e.g., hydrocarbon liquid) 
  • Top of the emulsion layer 
  • Bottom of emulsion layer (e.g., water level) 
  • Sediment 
With Magnetrol's breakthrough in TDR-based level instrumentation, continuously measuring dynamic conditions in the most challenging types of separators is now achievable.

To learn more about Genesis™ Multiphase Detector from Magnetrol contact Miller Energy, Inc.
Phone: 800-631-5454

Schubert & Salzer Sliding Gate Control Valves from Miller Energy


The sliding gate control valve from Schubert & Salzer has an innovative design that allows it to handle complicated applications requiring precise control under challenging circumstances. The sliding gate valve's actuation power is roughly 10% that of a globe valve of the same nominal size and differential pressure, even if both designs have almost the same flow rate.

The valve handles steam, liquids, and gases. Sliding gate valves outperform traditional control valves and use smaller actuators because they require reduced actuating force. They provide lower weight and reduced installation dimensions due to the space-saving wafer design, especially in nominal sizes mid-large. 

Due to the unique design, harmful cavitation zones occur 1 - 2 meters beyond the valve in the case of a sliding gate valve, placing the destructive cavitation bubbles downstream, in the pipeline's center, causing no damage.

Miller Energy, Inc.
800-631-5454

Pulse Burst Radar Level Transmitters

Pulse Burst Radar Level Transmitters

Pulse Burst Radar sends short bursts of energy to the surface of a liquid. The time it takes for a signal to be reflected off the liquid surface is measured by ultra-high-speed timing circuitry. 

Filtering out false reflections and other background noises is accomplished through sophisticated signal processing. The precise level is then calculated by taking tank height and additional configuration information into account. Because the circuitry is highly energy-efficient, no duty cycling is required, as with other radar devices. This enables the device to track rapid level changes of up to 4.5 m/minute (180"/min). 

Magnetrol uses Pulse Burst Radar for Radar level measurement rather than frequency modulated continuous wave (FMCW), which is today's more common operational technology. Pulse Burst Radar operates in the time domain and does not necessitate the complex and costly processing required for FMCW. 

Pulse Burst Radar is more efficient at sorting through extraneous echoes and selecting the one reflected by the actual level because echoes are discrete and separated in time. Pulse Burst Radar also has excellent averaging characteristics, vital in applications where the return signal is affected by the factors described in "Don't Forget the 3 D's of Radar" below. 

Unlike actual pulse devices, which send a single sharp (fast rise-time) waveform of wide-band energy, Pulse Burst Radar sends out short bursts of 6 GHz or 26 GHz energy and measures the transit time of the signal reflected from the liquid surface. The following equation is used to calculate distance:

Distance = C x Transit Time/2, (where C = Speed of Light)

The level value is then calculated by taking tank height and other configuration information into account. The sensor reference point – the bottom of an NPT thread, top of a BSP thread, or face of a flange – is the exact reference point for distance and level calculations. 

Remember the 3 D's of Radar 

Three fundamental conditions influence radar applications: 

  • The process medium's dielectric; 
  • The application's distance, or measuring range; and 
  • A wide range of disturbances can weaken or distort the radar signal. 

Low dielectric media can weaken radar's return signal, reducing the effective measurement range of a device. Pulse Burst Radar provides accurate measurements even in low dielectrics. However, when the dielectric is extremely low, as with liquid gas, fuels, and solvents, or when boiling and/or flashing can occur, Guided Wave Radar (GWR) may be the better choice in radar technology. 

The distance, or measurement range, of Pulse Burst Radar, is determined by the antenna used, the dielectric constant of the medium, and the presence of signal interference. Turbulence, foam, false targets (interior tank obstructions causing false echoes), multiple reflections (reflections off the tank roof), and a frequent level change rate can all weaken, scatter, or multiply radar signals. Excessively high or extremely low liquid levels can also be problematic. 

The Processing of Signals 

Because radar exhibits interference effects similar to those seen in light, the signal processing function is critical. The quality of a device's signal processing is what distinguishes today's cutting-edge radar transmitters from the rest. 

Pulse Burst Radar extracts accurate levels from false targets and background noise through its sophisticated signal processing capabilities. Because pulse burst radar circuitry is highly energy-efficient, no duty cycling is required to achieve effective measurement. As a result, Pulse Burst Radar can track high rates of change that would be impossible to track with other loop-powered radar transmitters. Although Pulse Burst Radar has a robust false target recognition and rejection routine, proper installation significantly minimizes false target reflections. 

Antennas 

The radar signal is transmitted and received by the antenna on the transmitter. Each antenna's maximum measuring range is primarily determined by dielectric constants and the degree of turbulence. Horn antennas can measure dielectric media as low as 1.4, whereas rod antennas have a minimum dielectric of 1.7. 

Benefits 

Pulse Burst Radar measures a wide range of media accurately and reliably in a wide range of process conditions, from calm product surfaces and water-based media to turbulent surfaces and aggressive hydrocarbon media. As a non-contact device, Pulse Burst Radar is immune to the complications that can occur when a probe comes into contact with the process media, such as coating from high viscosity media or corrosive attack from aggressive chemicals. Given the cost of extended probe lengths, the greater the measuring range, the more radar proves to be the cost-effective solution. Temperatures, pressures, the presence of vapors, and air movement within a vessel's free space have little effect on the radar. Specific gravity, conductivity, and dielectric constant changes do not affect measurement accuracy. The lack of moving parts in a 100% electronic instrument translates into low maintenance costs, and, as a two-wire, loop-powered device, power requirements and installation are greatly simplified.

Miller Energy, Inc.
https://millerenergy.com

In New York Metro and Northern NJ
Phone: 800-631-5454

In Eastern Pennsylvania and Delaware:
Phone: 610-363-6200

In Western Pennsylvania:
Phone: 412-257-0200

In Ohio:
Phone: 440-735-0100

Magnetic Level Indicators and Controls for Industrial Process Applications

Magnetic Level Indicators and Controls

Fluid process control operations frequently involve the storage of liquids in a vessel or tank. The continuous and accurate indication of the liquid level within the tank is an important data point for process control decision making and safety. Several tank level measurement methods and instrument types are available, each with its own set of characteristics that may be advantageous for a specific installation. 

A tank liquid level indicator's selection criteria often include: 

  • Does the process require direct or indirect measurement of level?
  • What level measurement accuracy and reliability is needed?
  • What is the tank shape, regular or irregular?
  • Are there concerns with media compatibility with measurement device materials of construction?
  • How often will maintenance or calibration be needed?
  • Is the instrument capable of operating at the process temperature and pressure for the application?
  • Does the application require local display and visibility or remote?
  • Are control signals from the level indication required? What type and transmission protocol?
  • What kind of redundancy and safety devices, such as additional switches, are needed?

Magnetically coupled liquid level indicators, or MLIs, are widely used in the process industry. They are accurate, consistent, and reliably indicate liquid level. These units are completely sealed and do not require any maintenance. MLIs also eliminate the vapor or liquid emission issues that plague sight and gauge glasses. 

Most Compelling Reasons for Using MLI's:

  • Level measurement is continuous. 
  • Operable without the use of electricity. 
  • Regardless of tank shape or profile, they provide a direct visual tank fluid level indication. 
  • They are available in wide operating temperature and pressure ranges. 
  • MLI construction is resistant to breakage.
  • A variety of materials are available to accommodate corrosive media. 
  • Externally mounted measuring indicators, switches, and transmitters do not come into contact with the process media. 
  • MLI's provide a continual operation that requires little maintenance. 
  • The level indication is viewable from a greater distance than glass sight gauges. 
  • With a single instrument, it is possible to measure large fluid level ranges.

Magnetic level indicators have a strong presence in tank liquid level measurement and should be considered a candidate for meeting those application requirements. There are numerous options for customizing the level indicator for each application.  Work with your local Sales Engineer,  a specialist in level measurement, about your application challenges and positive outcomes. 

For more information, contact your local Miller Energy, Inc. regional office:

South Plainfield, NJ Office
Serving Northern NJ, New York, and Fairfield County Connecticut
South Clinton Ave.
South Plainfield, NJ 07080
Phone: 908-755-6700
Toll Free: 800-631-5454
Fax: 908-755-0312

Exton, PA Office
Serving Southern NJ, Eastern PA, Delaware and Central and Eastern Maryland
505 Gordon Drive
Exton, PA 19341
Phone: 610-363-6200
Toll Free: 888-631-5454
Fax: 610-524-7254

Cleveland, OH Office
Serving Ohio
555 Golden Oak Parkway
Cleveland, OH 44146
Phone: 440-735-0100
Fax: 440-735-0123

Selecting Variable Area Flow Meters for Process Flow Measurement

Variable Area Flow Meters

Many industrial processes involve the movement of fluid product components, either liquid or gaseous, through pipes. Because processing is about control, an input to the facility's management, measurement, or data logging centers will answer the query, "How much is going through that pipe?" 

In the industrial process measurement and control industry, there are several ways for quantifying flow, each with unique characteristics that may be useful under certain operating situations. All flow measuring methods are indirect because the actual measurement is of a character influenced predictably by a change in the media flow. Flow measurement is a critical component that, when paired with other fluid properties, is used to calculate the total mass of a fluid passing through the measurement site. 

The variable area meter, commonly known as a rotameter and VA meter, is a tried and true flow measuring device that operates by creating an equilibrium between an upward force created by fluid motion and a downward force, gravity. A tapering glass or metal tube encases a specifically shaped float, also known as a shaped weight, in the device. VA meters must be positioned vertically, with the media flowing upward from the bottom, so that the gravity force required for functioning is correctly aligned with the flow direction. As fluid flows upward via the precisely tapered tube, drag is created on the float enclosed within the tube, pulling it upward. As the float rises, the open space between the float and the tube wall expands, causing the fluid velocity and drag force to decrease. The flow velocity within the tube will cause the weight to climb for any given flow volume until the drag force generated by the flow reaches equilibrium with the countervailing power of gravity on the float. The tube and float are well designed, allowing for an immediate indication of flow volume.

Variable area flowmeters have the following operating characteristics: 

  • There is no need for external power or fuel for functioning. 
  • Vertical installation is required, with flow arriving at the bottom. 
  • Meters are calibrated to a given chemical and temperature. 
  • The operation is stable and has a modest pressure drop. 
  • For operation, constant gravity is required. 
  • Flow rate can be read locally using a meter or a scale inscribed on the tube. 
  • The visibility of the float through the medium is required for unit flow readings using glass tubes. 
  • For industrial flow metering equipment, accuracy is relatively low. 
  • Inexpensive upkeep, simple construction, and low comparative cost.

Brooks Instrument, a world-renowned maker of flow, pressure, and level measurement equipment, created a brief paper highlighting the parameters to consider when specifying a VA meter and how each aspect influences the unit's performance. The description is realistic and straightforward to grasp. It is suggested reading for all process stakeholders who want to improve their flow measuring skills.

For more information about variable area flow meters contact Miller Energy. Call 800-631-5454 or visit https://millerenergy.com.

Process Refractometers for Water Treatment Chemical Concentration Monitoring

Process Refractometers for Water Treatment


INTRODUCTION


Pure water treatment removes undesirable chemicals, biological contaminants, suspended solids, and gases from raw water. Water purification aims to produce water for a specific purpose, such as human consumption and medical or industrial use.


Polyaluminium coagulants are increasing use in potable water treatment plants, particularly for soft, colored surface waters. Polyaluminium chloride (PACl) is gradually replacing Alum (aluminum sulfate), a commonly used coagulant in water treatment plants. Alum coagulates at a limited pH range (between 5.5 and 6.5) and often requires alkali to the raw water to achieve the optimum coagulation pH. Furthermore, the alum floc produced is particularly fragile, which is vital if a coagulant is required to maximize color removal in a microfiltration-based water treatment process.


K-Patents Teflon Body Refractometer PR-23-M from Miller Energy, Inc.


APPLICATION


Water treatment by chemical precipitation is a complex process. It starts with adding flocculants, specifically, Polyaluminium Chloride (PACl) and Sodium Hydroxide (NaOH). PACl is a synthetic polymer dissolved in water. It precipitates in big volumetric flocs, which absorb suspended pollutants in the raw water. The turbidity of the raw water defines Polyaluminium Chloride quantity. PACl concentration must be higher than 10 % To keep the flocculation process smooth. Polyaluminium Chloride is stable in the storage tank; however, it tends to crystallize after some time. Vaisala K-PATENTS® refractometer monitors the concentration of PACl to inform about the need for tank or pipe cleaning, thus preventing blockage caused by the PACl crystals.


NaOH regulates pH level, increases alkalinity, and neutralizes acids in the water. In alkaline water, the coagulation and flocculation processes work more effectively. Moreover, sufficient alkalinity prevents dissolving the lead from pipes and pipe fittings and reduces the corrosive effect of the water to iron pipes.


Further, particles suspended in water start to precipitate and agglomerate to form larger particles, known as flocs. The flocs are then settled at the bottom, forming sludge, and then removed from the process. After separating most of the floc, the remaining suspended particles and unsettled floc get filtered to remove water.


In the filtration phase, the water goes through the layers of anthracite, sand, and gravel. As a result, organic compounds contributing to taste and odor get removed. Other remaining particles get trapped by adhering to the sand and gravel particles.


After harmful micro-organisms get removed through filtering, it is necessary to add disinfecting chemicals to the water to inactivate any remaining pathogens and potentially harmful micro-organisms. One of the disinfecting chemicals used is Sodium Hypochlorite (NaOCl). When dissolved in water, this chemical releases chlorine, which is an efficient and safe disinfectant if added in a sufficient amount. Apart from sodium hypochlorite, liquid chlorine and chlorine dioxide are also choices as disinfectants.


Fluoride may also be added to the water to reduce tooth decay and prevent chronic diseases. However, fluoride in the water must not exceed recommended levels. Excessive levels of fluoride can be toxic or cause undesirable cosmetic effects such as staining of teeth.


Sodium Hypochlorite is unstable and quickly decomposes. The stability of NaOCl solution is dependent on the following factors:


  • Hypochlorite concentration
  • The temperature of the solution
  • PH value of the solution
  • The concentration of the impurities during catalyzing decomposition
  • Exposure to light


With the process refractometer, it is possible to monitor NaOCl concentration and control the disinfection conditions.


The water purification disinfection stage happens in the disinfectant basin. Then, corrosion control assures the high quality of the purified water. Finally, the pure water gets stored for further consumption.


INSTRUMENTATION AND INSTALLATION


Vaisala K-PATENTS® Teflon Body Refractometer PR-23-M provides in-line measurements of Polyaluminium Chloride and Sodium Hydroxide at the initial stage of purification, ensuring the efficient flocculation of undesired particles. In addition, through the measurement of Sodium Hypochlorite and Fluoride at the water disinfection stage, high-quality purified water at the outlet is assured.


Refractometer installations happen in three different points in a by-pass loop between each chemical tank pump outlet and the treatment point. The refractometer allows monitoring the chemicals concentration at the exit from the storage tank to the pipe treatment point.


Typical measurement ranges are:

  • PACl is ca. 10-11 %
  • NaOH is ca. 40-45 %
  • NaOCl is ca. 8-12 %

Miller Energy, Inc.
https://millerenergy.com
800-631-5454

Cashco Sanitary / Hygienic Regulators and Control Valves

Cashco manufactures a broad line of throttling rotary and linear control valves, pressure reducing regulators, and back pressure regulators used in pharmaceutical, biopharma, life science, food & beverage, cosmetic, and semiconductor industries. 

Cashco sanitary/hygienic products include: 

Sanitary Reducing Regulators 

Model C-CS, Model C-PRV, CA1/SA1, CA4/SA4, Model 5381, Model P1, Model P2 Model P3, Model P4, Model P5, Model PA1/PL1 

Sanitary Back Pressure Regulators 

Model C-BPV, Model 3171, Model CA5/SA5, Model BA1/BL1, Model B2 

Sanitary Control Valves 

Model SCV-30, Model SCV-S 

Controllers 

Model 764P-37 

Sanitary Blanketing Valve 

Model 1088, Model 1088-BP, Model 1100 

For more information about Cashco Sanitary / Hygienic Products, contact Miller Energy. Call them at 800-631-5454 or visit their website at https://millerenergy.com​.

United Electric Controls 12 Series Pressure and Temperature Switches

United Electric Controls 12 Series Pressure and Temperature Switches

SIL 2 Certified, vibration-resistant, 316 stainless steel pressure, differential pressure and temperature switches.

The United Electric Controls 12 Series hazardous location switches are suitable for challenging applications where space is limited. Snap-action Belleville spring assemblies provide vibration resistance and extended switching life. The 316 stainless steel enclosure and the hermetically sealed switch provide robust environmental protection. Approved for use in hazardous environments, the 12 Series outperforms the competition in applications ranging from refineries to chemical plants, rotating machinery, and more.


In New York Metro and Northern NJ
Phone: 800-631-5454

In Eastern Pennsylvania and Delaware:
Phone: 610-363-6200

https://millerenergy.com

The Thermo Scientific™ Prima PRO Online Mass Spectrometer & Process Gas Analyzer

The Thermo Scientific™ Prima PRO online mass spectrometer & process gas analyzer meets many challenging process applications in the petrochemical, iron, and steel, and biotechnology industries. The Prima PRO online mass spectrometer delivers faster, more complete, and highly reliable lab-quality online gas composition analysis. It features a rugged, fault-tolerant design that ensures availability that exceeds 99.7%, a simplified maintenance procedure, and an auto-tune capability to facilitate ongoing operation and enhance productivity.

For more information about the Thermo Scientific™ Prima PRO in Metro New York, New Jersey, Pennsylvania, Delaware, and Northern Ohio, contact Miller Energy, Inc.  Call them at 800-631-5454 or visit their website at https://millerenergy.com.

Sliding Gate Control Valves from Schubert & Salzer


Schubert & Salzer's sliding gate control valves are designed as an effective alternative to traditional control valves. The sliding gate valve controls liquid, vapor, and gaseous media precisely, quickly, and economically. The design is uniquely simple, but is intelligently built to handle complex applications that require precise control under taxing conditions. They are an excellent choice for a variety of media, including steam, liquids, and gases.

Sliding Gate Control Valve Operation

A sealing plate with many crossways slots of equal height is fixed in the body at right angles to the flow direction. A moving disc with the same slot arrangement moves in parallel to the fixed disc, thereby changing the flow cross-section. The prevailing differential pressure presses the moving disc against the fixed disc and seals it. 

The machined orifices in the fixed plate or disc can vary in design, size, and configuration, determining the flow coefficient (Cv) and the flow characteristic of the valve. As the cross sectional area changes and the valve modulates, flow is broken apart, creating a variable field of area flow, which reduces energy and noise. The differential pressure creates a unique seal between the two plates, and when in the sealed position, an overlap of approximately 1 mm creates a leak-tight valve.

ADVANTAGES OF THE SLIDING GATE CONTROL VALVE

  • Fits into tight spaces
  • Outstanding rangeability
  • 40:1 to 160:1
  • Easy to install and maintain
  • Variable Cv Values
  • Significantly reduced energy consumption
  • Minimal wear
  • Extremely low leakage rate
  • Optimal flow control
  • Maximum differential pressures

For more information about Schubert & Salzer products contact Miller Energy, Inc. Call them at 800-631-5454 or visit their website at https://millerenergy.com.

The Vaisala K-PATENTS PR-43A Sanitary Process Refractometers for Food, Beverage & Dairy Industries

Vaisala K-PATENTS® Sanitary Process Refractometers PR-43-AC for hygienic installations in small pipe line sizes of 2.5 inch and smaller; PR-43-AP for hygienic installations in large pipes, tanks, cookers, crystallizers and kettles and for higher temperatures up to 150°C (300 °F); and the PR-43-APT for flush mounting installations in cookers, cooling crystallizers and other vessels that have scrapers or mixers.

Sanitary Refractometer Applications:

Extraction, evaporation, brewing, distilling, sugar dissolving, blending, filling. Alcohol, rum, whiskey, brandy, vodka, molasses, liquors, cider, alcoholic beverages, pre-mixed liquors. Beer and malt beverages, wort, cut beer, root beer. Juices, blended vegetable and fruit juices and nectars, still drinks, vegetable and juice concentrates, iced tea and coffee, instant coffee and tea. Soft drinks, energy and sport drinks, beverage base. Wines, grape must.

Sanitary Refractometer 3A Approval:

The Sanitary refractometer PR-43-A is Sanitary 3-A approved to meet the highest hygiene requirements of food production. The 3-A Symbol assures that the Sanitary Refractometer

PR-43-A conforms to 3-A Sanitary Standard Number 46-04 for Refractometers and Energy-Absorbing Optical Sensors for Milk and Milk Products and it has passed the independent Third Party Verification inspection for 3-A Symbol authorization.

For more information about Vaisala K-PATENTS products in Metro New York, New Jersey, Pennsylvania, Delaware, and Northern Ohio contact Miller Energy, Inc. Call them at 800-631-5454 or visit their web site at https://millerenergy.com.

Yokogawa Boiler Controls Used on USNS Mercy


On the United States Navy Hospital Ship Mercy, Yokogawa's Indicating Controllers are used to control two Foster Wheeler boilers supplying steam to 2 GE turbines to generate 18.3 MW of power.

Miller Energy, Inc.
https://millerenergy.com

The Magnetrol Eclipse 700 Guided Wave Radar (GWR) Transmitter


The Magnetrol Eclipse® Model 700 GWR is designed with the chemical processing industry in mind. It gives you the performance and durability you need to address your biggest challenges in a streamlined, versatile configuration cost-effective enough to use in a variety of common applications.

The Eclipse® 700 is a guided wave radar (GWR) transmitter that easily handles challenging situations as well as common chemical processing applications. Its streamlined configuration gives you the features you want and the diagnostics you need, at the price point you expect.

Versatile – Able to be used in a broad range of chemical processing applications

Robust – Stands up to challenging conditions like foaming, interface, and high pressure or harsh conditions

Superior SNR – Strong signal strength is ideal for low dielectric media

Reliable – True Level Measure provides industry-leading accuracy along the entire probe length

Overfill-Safe Operation – Only Eclipse transmitters are available with overfill-capable probes

Proactive Diagnostics – Saves echo curves and offers troubleshooting tips when a problem occurs

For more information, contact Miller Energy, Inc. Call them at 800-631-5454 or visit their website at https://millerenergy.com.

Upcoming Yokogawa "Back to Basics" Process Control Webinar Series

Now is the time to use your time productively!  Yokogawa's "Back to Basics" webinar series provides you a great resource to learn and review different measurement technologies. These online webinars discuss recommended practices, application selection and sizing, and how to avoid common pitfalls. Gain insight directly from the experts!


Yokogawa Back to Basics Series:




"Attaining Proficiency in Industrial Pressure Measurement "

Online Webinar
Thursday, April 9, 2020
11:00 AM Eastern / 8:00 AM Pacific

This webinar reviews the basic principles of measuring pressure and key considerations when selecting pressure transmitters for various applications.

This webinar will discuss:
  • The basic physics of pressure
  • Types of pressure sensors
  • Communication standards
  • Sensor technology considerations
  • Calibration and maintenance best practices



"Fundamentals of Fabulous Flow Measurement"

Online Webinar
Thursday, April 16, 2020
11:00 AM Eastern / 8:00 AM Pacific

This webinar will explore the fundamentals of flow measurement technologies and how they stack up in different applications.

In this webinar you:
  • Review the theory behind flow measurement technologies
  • Discuss common flow application challenges
  • Evaluate the different technologies when selecting a flow meter
  • Illustrate installation practices for successful measurements



"Magical Mystery Tour of High Purity pH Measurement"

Online Webinar
Thursday, April 23rd, 2020
8:00 AM Pacific / 11:00 AM Eastern

The presentation will explore the theory of pH and how it can be successfully applied in high purity applications, discuss both standard and solution temperature compensation, review installation requirements, and illustrate good calibration and maintenance procedures to facilitate satisfactory measurements.

In this webinar we:
  • Review the theory behind the measurement of pH
  • Discuss the issues surrounding high purity pH measurements
  • Illustrate the difference between standard and solution temperature compensation
  • Assess installation requirements for successful measurements
  • Clarify good calibration and maintenance procedures



"Vibrating Element Technology for Gas Density, Specific Gravity, and Hydrogen"

Online Webinar
Thursday, April 30, 2020
8:00 AM Pacific / 11:00 AM Eastern

This presentation goes over the theory behind vibrating element technology and explores some of the applications in which it can be used.

In this webinar you will review:
  • The theory behind density and vibrating element technology
  • The importance of using compensated density
  • How to clean the detector


"Digitally Transform your Plant with Field Wireless and IIOT"

Online Webinar
Thursday, May 7, 2020
11:00 AM Eastern / 8:00 AM Pacific

Wireless sensor networks can provide reliable and secure communications for applications including control, monitoring, safety, and reliability. Regardless of the application, wireless technology has opened the door for companies to pursue improvements that may have been impossible or uneconomical in the past. However, adopting a wireless strategy is more than just throwing a few radios out into the plant. A little planning can go a long way to ensure your future success.

Topics covered include:
  • Where you would use Field Wireless vs IIoT
  • The fundamentals of wireless sensor networks
  • Applications that illustrate how a wireless strategy can transform your operations, improve reliability, and increase safety



White Paper: Using Digital MFC Capabilities to Improve Bioprocessing Results Miller Energy

Biomanufacturing relies on numerous pieces of equipment working in concert to produce life-altering therapeutics. The equipment relies on various subsystems to achieve the desired results. In a bioreactor, one of the most essential subsystems provides gas management for the gases necessary for cellular metabolism. At the heart of the gas management subsystem is the thermal mass flow controller (MFC), a component that precisely measures and controls the delivery of gases to the bioprocess.

This white paper, courtesy of Brooks Instrument, discusses mass flow controller data capabilities in relation to a broader biomanufacturing capital asset management.


For more information on Brooks Instrument products, contact Miller Energy. Call them at 800-631-5454 or visit their website at https://millerenergy.com.

Programming the UE One Series Hybrid Transmitter-Switches


The United Electric Controls One Series electronic pressure and temperature transmitter-switches are designed to provide transmitter, switch and gauge functions all-in-one rugged enclosure that can withstand the rigors of harsh and hazardous environments. Available in Type 4X enclosures approved for intrinsic safety, flameproof and non-incendive area classifications, these hybrid transmitter-switches have a fully adjustable set point and deadband and 0.1% repeatability. This video provides a quick tutorial on how to set up the One Series.

For more information, contact Miller Energy. Call them at 800-631-5454 or visit their web site at https://millerenergy.com.

Don’t Let Valves Come Between You and Accurate Flow Measurement

Getting valves and flow meters to work together is sometimes a challenging task within industrial water and wastewater applications. Valves tend to create the kind of irregular media flow patterns in pipelines that make it a real challenge to achieve accurate flow measurement of liquids, gas or steam. That’s why many types of popular liquid flow meters require straight pipe runs.

Unfortunately, the nature of the process or the kind of space required for long straight runs of pipe is often an impossible luxury in many of today’s plants.



How Valves Create Flow Disturbances


Depending on a pipeline’s flowing media (liquid, gas or steam), the process pressures and the process temperatures, the fluid flow dynamics within a pipeline can vary widely. The ideal pipeline configuration for the accurate measurement of flow with nearly all of the industry’s most popular flow sensors is a straight pipe with consistent media conditions Many processes by their very nature, however, tend to be unstable and create irregular flows within a pipeline all by themselves.

Plant layouts, especially expansions and retrofits, also tend to create less than optimum pipeline conditions for the measurement of flow. The addition of valves, pumps, elbows and other equipment into the pipeline create media swirling and other effects that can result in irregular flow profiles that will reduce flow meter measurement accuracy and repeatability. That’s why many flow meter manufacturers recommend anywhere from 5 to 10 or even 20 to 30 pipe diameters of straight pipe run upstream and downstream of the flow meter—depending on the flow sensing technology in use.

Flow Straightening and Conditioning


While the simple solution is to know your flow meter and its straight pipe run requirements to achieve accurate, consistent measurement, this is often easier said than done. Today’s complex and ever changing industrial processes, the need to treat and conserve water, crowded plant environments where real estate is precious, regulatory requirements and the team involved in running any plant can mean that your valve or elbow inevitably intrudes on your flow meter’s turf. Many times the first sign of the problem is when the flow meter isn’t reading the flow accurately. By then changing the pipeline layout or moving other devices such as valves is impractical and too costly.

Flow straighteners and conditioners offer an answer to this problem. There are several different types of flow straighteners and conditioners, including perforated plates, tube bundles, etc. The purpose of all flow straighteners and conditioners is to eliminate swirl and provide a stable velocity flow profile. Of course the ideal time to think about flow conditioning is before the flow meter is installed so that the flow conditioner and flow meter can be calibrated to work together. One drawback to add-on flow conditioners and straighteners is that they increase head loss.

Flow Meters With Built-In Conditioning


Another solution to consider is the installation of a flow meter with built-in flow conditioning. This type of solution offers the advantages of installation flexibility, reduced equipment, simplified installation with potentially fewer pipe penetrations and reduced maintenance requirements. Several manufacturers offer flow meters that include built-in flow conditioning. For example, McCrometer’s V-Cone Flow Meter is a differential-pressure sensing meter with integral flow conditioning that operates within liquids, gas or steam.

McCrometer’s V-Cone Flow Meter
McCrometer’s V-Cone Flow Meter
The V-Cone’s DP flow sensor conditions fluid flow to provide a stable flow profile that increases accuracy. The flow sensor‘s design features a centrally-located cone inside a tube. The cone interacts with the fluid flow and reshapes the velocity profile to create a lower pressure region immediately downstream. The pressure difference, which is exhibited between the static line pressure and the low pressure created downstream of the cone, can be measured via two pressure sensing taps. One tap is placed slightly upstream of the cone and the other is located in the downstream face of the cone itself. The pressure difference can then be incorporated into a derivation of the Bernoulli equation to determine the fluid flow rate.

The cone’s central position in the line optimizes the velocity of the liquid flow at the point of measurement. It forms very short vortices as the flow passes the cone. These short vortices create a low amplitude, high frequency signal for excellent signal stability. The result is a highly stable flow profile for measurement accuracy to +0.5% with +0.1% repeatability over a wide flow range of 10:1. All of this is possible with a minimal straight pipe run of 0 to 3 diameters upstream and 0 to 1 diameters downstream from the flow meter depending upon placement from valves and other control devices.

Conclusions


Getting accurate flow measurement with valves, pumps, and other equipment in relatively close proximity is difficult, but achievable. The ideal way to achieve accurate and repeatable flow measurement within industrial water and wastewater applications is to recognize in advance the straight pipe run requirements of the flow sensing technology in use at your plant. When the process, the plant layout or other factors lead to swirl in your pipeline that affects meter performance, then consider either flow conditioners or a flow meter with built-in flow conditioning.

Attribution: Original white paper written by Jim Panek, Product Manager, Water & Wastewater, McCrometer, Inc.

Tutorial: The Yokogawa SMARTDAC+ GX/GP Paperless Recorder Channel Settings


The Yokogawa SMARTDAC+ GX and GP are fully integrated measurement, display, and recording platforms equipped with an advanced touch screen operator interface. GX series is a panel-mount design, capable of operating in harsh industrial applications and environments. GP is the portable version of the GX, intended for use in lab and test bench applications.

This video is a tutorial to learn the display settings available within the SmartDAC+  GX/GP's analog input, digital input, digital output, math, and communication channel settings.

For more information about the Yokogawa SMARTDAC+ GX/GP Paperless Recorder contact Miller Energy, Inc. Call them at 800-631-5454 or visit their web site at https://millerenergy.com.