Showing posts with label temperature. Show all posts
Showing posts with label temperature. Show all posts

United Electric Controls 12 Series Pressure and Temperature Switches

United Electric Controls 12 Series Pressure and Temperature Switches

SIL 2 Certified, vibration-resistant, 316 stainless steel pressure, differential pressure and temperature switches.

The United Electric Controls 12 Series hazardous location switches are suitable for challenging applications where space is limited. Snap-action Belleville spring assemblies provide vibration resistance and extended switching life. The 316 stainless steel enclosure and the hermetically sealed switch provide robust environmental protection. Approved for use in hazardous environments, the 12 Series outperforms the competition in applications ranging from refineries to chemical plants, rotating machinery, and more.


In New York Metro and Northern NJ
Phone: 800-631-5454

In Eastern Pennsylvania and Delaware:
Phone: 610-363-6200

https://millerenergy.com

Simplified Operation and Reduced Cost With Safety Transmitters and Switches

Series One Safety TransmittersProcess safety experts continually seek sustainable ways to improve the performance of safety critical loops, achieving risk reduction and safety goals in a cost-effective manner. Some view a reduction in complexity of safety related protocols to be a positive development. Traditional or historical approaches to deploying full blown safety systems were generally associated with great expense and high complexity, and still came up short on delivering the needed levels of risk reduction. Process control device and equipment manufacturers have responded with newer technologies and products that better address the safety needs of industrial processing.

In sensor subsystems, United Electric’s certified safety transmitter for pressure or temperature provides a less costly, simple path for process designers, instrument and control engineers, and maintenance personnel. The Series One Safety Transmitters combine several useful safety and monitoring functions into a single, easy to deploy device. Products are available for gauge pressure, differential pressure, and temperature applications. In addition to a 4-20 mA process variable output, the Series One has an embedded programmable high-capacity relay certified as a safety variable output. The Series One Safety Transmitter provides designers the option of a hard wired trip in less than 100 milliseconds, with a tenth of a percent repeatability, along with the monitoring functions of a traditional continuous analog output.

For equipment under control requiring protection, or processes where rapid excursions can initiate dangerous events, this unique pressure and temperature transmitter is addressing process safety time constraints, coupling issues with PLC and DCS units, and adding diversity to the safety instrumented function.

There is a whole lot more to learn about these "Safety right out of the box" industrial pressure and temperature safety transmitters. A product data sheet is provided below, but you can get the latest and most detailed product and application information from a specialist in industrial process measurement and control. Share your safety instrumentation challenges with them, combining your process expertise with their product application knowledge to develop effective solutions.

Learn more about the UEC One Series by visiting this page on the Miller Energy web site.




Bimetal Thermometers for Industrial Process Measurement

stainless steel bimetal thermometer
Bimetal thermometers have a place in modern process
measurement systems.
Image courtesy Wika
Temperature measurement is everywhere, with broad ranges of accuracy, range and other operational requirements to bring the measurement data into a process management or control system. The process could be as simple as measuring a cooking temperature, or a part of a complex refining operation. Temperature provides an indication of heat energy level that is used in many ways throughout process control.

Though there are many instruments and technologies available to measure temperature, one that everyone is familiar with is the dial thermometer. A familiar numeric scale and a pointer indicate the temperature at the sensing location. Even within the product range of dial thermometers, there are several differing methods utilized to produce a temperature reading. One of these is the bimetal thermometer.

A bimetallic thermometer is named for the mechanism that responds to process temperature and provides the force to position the indicator needle over the scale on the dial face. A bimetal is formed from two dissimilar metals bonded together. The metals expand and contract at different rates in response to a change in their temperature. A bimetal thermometer relies on the predictable deformation of a bimetal spring or strip in response to a temperature change. The mechanical deformation is transformed into rotational movement of the indicating needle on the instrument face where the corresponding temperature can be read by a technician or operator. This design principle has been in use throughout laboratories, kitchens, and industry for many years and has proven to be predictably accurate, stable, and rugged.

The major advantages of the bimetallic thermometer are its relative cost, ease of use, and ability to function without any external power source. This class of instruments provides operability up to +1000°F.

When applying dial faced thermometers, there are several main considerations.

  • Scale - The display behind the indicating pointer. The scale divisions impact the instrument's accuracy at indicating process temperature.  
  • Range - The physical suitability of the instrument to be exposed to the temperatures which may be present in the process. May be the same as scale.
  • Dial Size - Larger diameter dial faces make reading the instrument indications easier.
  • Connection - There are numerous options for the way in which the probe or stem, which is inserted into the process, attaches to the dial portion or head of the instrument. Common arrangements are back, side, or bottom connected. If the head cannot be rotated or angled, the connection attributes may be the sole determinant of how the dial face is oriented.
  • Stem Length - The stem extends from the head into the process. Coordinating the stem length with the insertion depth into the process and the placement of the instrument is important to achieving a useful and ergonomic installation.
  • Materials of Construction - Make sure the selected instrument is rugged enough to withstand expected environmental conditions at the installation site.
These are only the primary considerations. Share your operational requirements with a product specialist. Leverage your own knowledge and experience with their product application expertise to develop the optimal solution.

Register Early for the Yokogawa Users Conference 2018

Yokogawa Users Conference North America
The Yokogawa Users Conference for North America will be held
on September 10 - 13 in Orlando, FL
Yokogawa is hosting its Users Conference in Orlando FL for 2018. This excellent event enables attendees to:

  • Learn how to maximize the value of their measurement and control investment.
  • View and learn about the latest products and solutions for process measurement and control.
  • Interact with subject experts and Yokogawa partners.
  • Network with industry peers.
  • Build knowledge of best practices for particular industries and measurement and control in general.
There will be panel discussions, technical sessions, exhibits and more. The event is scheduled for September 10th through 13th, and early registration has started. Make plans to attend and build your knowledge base. You can find the registration information at the conference website, or reach out to a Yokogawa representative to find out more.

Miller Energy Exhibiting at ISPE Delaware Chapter Symposium and Exhibition

Miller Energy, Inc. is exhibiting at the ISPE Delaware Valley Chapter
28th Annual Symposium & Exhibition, Booth #2034
For the 28th year, the ISPE Delaware Valley Chapter is hosting a symposium and exhibition supporting pharmaceutical industry research, production and operations. The event is held at Lincoln Financial Field, in Philadelphia, and draws broad participation from industry participants of all types. Miller Energy, a process measurement and control solutions provider, is exhibiting at booth #2034 in the exhibition area. The company is located in the Philadelphia area and has been serving the industry for many years, meeting application challenges for fluid measurement and control, as well as other related operations. 

Learn more about Miller Energy with a visit to their website, but more importantly, stop by their booth and introduce yourself when you go to the exhibition. Share your process measurement and control challenges with the seasoned professionals at Miller Energy. Leverage your own knowledge and experience with their product application expertise.

Focus Your Product Selection Quickly With This Useful Tool

Yokogawa Process Instrumentation Selection Tool
The Process Instrumentation Selection Tool from Yokogawa
enables the user to make detailed product selections
with a few clicks.
Image courtesy Yokogawa
In the process measurement sphere, manufacturers respond to market demand and their own growth goals by offering integrated product solutions. This can result in a product offering that is extensive, with many different products that can be applied to the same task. There are often several, or many, choices to winnow down to a final selection. Product research and evaluation for application suitability takes time. In today's business environment, time is what we never seem to have in sufficient quantity. Finding ways to streamline any process can be beneficial.

Yokogawa is one of those companies that manufactures a broad range of products for process measurement. Whatever your process measurement needs, it is likely the Yokogawa has an effective solution that delivers solid quality and performance.

In a past blog posting, we introduced readers to Process Instrument Selection Tool. With some basic information about your application, a few clicks can quickly deliver access to the best product selection for an application. It is simple, rapid and accurate. The product selector covers 24 basic measurement and instrumentation classifications. We are posting about it again because it has been so successful in helping customers zoom in on the right product solutions for their process measurement applications.

The Product Finder is accessible through a number of links throughout Yokogawa's network of representatives. Clicking the link lands you on the start page of the Product Finder. Try it out, and share your process measurement and control challenges with application specialists for even more leveraging of your own process knowledge and experience toward an effective solution.

Best Temperature Control Performance Starts With a Match of Sensor Configuration to Application

temperature sensors configured for surface temperature measurement
A specially configured temperature sensor can improve
measurement response and process control.
Image courtesy Applied Sensor Technologies
There are more temperature controlled operations than any of us could count in a lifetime, each with a set of signature performance requirements and design challenges. Matching the means of temperature measurement, the control loop characteristics, and heat delivery method to the application are essential to achieving successful operation.

Step one is to measure the process temperature. This sounds simple until you start researching products and technologies for measuring temperature. Like the temperature controlled operations mentioned previously, they are numerous. To filter the possible candidates for temperature sensing devices, consider these aspects of your application and how well a particular sensor may fulfill your requirement.
  • Response Time - How rapidly the sensor will detect a change in process temperature is a function of how the sensor is constructed and how it is installed. Most temperature sensors are enclosed or encapsulated to provide protection for the somewhat vulnerable sensing element. Greater mass surrounding the sensing element, or a shape that inhibits heat transfer from the process to the sensor, will slow sensor response. Whether the slower response time will adversely impact process operation needs to be considered. More consideration is due to the manner in which the temperature sensor assembly is installed. Not all applications involve a fluid in which the sensor assembly can be conveniently immersed, and even these applications benefit from careful sensor placement.
  • Accuracy - Know what your process needs to be effective. Greater levels of accuracy will generally cost more, possibly require more care and attention to assure the accuracy is maintained. Accuracy is mostly related to the type of sensor, be it RTD, thermocouple, or another type.
  • Sensitivity - Related to the construction, installation, and type of sensor, think of sensitivity as the smallest step change in process temperature that the sensor will reliably report. The needs of the process should dictate the level of sensitivity specified for the temperature sensor assembly.
Take a simple application as an illustration. Heat tracing of piping systems is a common function throughout commercial and industrial settings experiencing periods of cold weather. Electric heat trace installations benefit from having some sort of control over the energy input. This control prevents excessive heating of the piping or applying heat when none is required, a substantial energy saving effort. A temperature sensor can be installed beneath the piping's insulation layer, strapped to the pipe outer surface. A specially designed sensor assembly can improve the performance of the sensor and the entire heat trace control system by enhancing the response time of the temperature sensor. A right angled sheath permits insertion of the sensor beneath the piping insulation while orienting the connection head upright. A surface pad at the tip of the sheath increases the surface contact with the pipe to provide faster sensor response. The surface pad is a metal fixture welded to the sensing end of the temperature sensor assembly. It can be flat, for surface temperature measurements, or angled for installation on a curved surface, like a pipe. The increased surface contact achieved with the surface pad promotes the conduction of heat to the sensor element from the heated pipe in our illustration. This serves to reduce and improve the response time of the sensor. Adding some thermally conductive paste between the pad and the pipe surface can further enhance the performance. While the illustration is simple, the concepts apply across a broad range of potential applications that do not allow immersion of the temperature assembly in a fluid.

A simple modification or addition of an option to a standard sensor assembly can deliver substantially improved measurement results in many cases. Share your temperature measurement requirements and challenges with a process measurement specialist. Leverage your own process knowledge and experience with their product application expertise.

Wireless Transmitters In Process Measurement and Control

industrial wireless temperature transmitter
Wireless industrial temperature transmitter
Courtesy Yokogawa
In process control, various devices produce signals which represent flow, temperature, pressure, and other measurable elements of the process. In delivering the process value from the measurement point to the point of decision, also known as the controller, systems have traditionally relied on wires. More recently, industrial wireless networks have evolved, though point-to-point wireless systems are still available and in use. A common operating protocol today is known as WirelessHARTTM, which features the same hallmarks of control and diagnostics featured in wired systems without any accompanying cables. Other wireless standards are employed in industrial settings, as well.

Wireless devices and wired devices can cohabitate the same network. The installation costs of wireless networks are decidedly lower than wired networks due to the reduction in labor and materials for the wireless arrangement. Wireless networks are also more efficient than their wired peers in regards to auxiliary measurements, involving measurement of substances at several points. Adding robustness to wireless, self-organizing networks is easy, because when new wireless components are introduced to a network, they can link to the existing network without needing to be reconfigured manually. Gateways can accommodate a large number of devices, allowing a very elastic range for expansion.

In a coal fired plant, plant operators walk a tightrope in monitoring multiple elements of the process. They calibrate limestone feed rates in conjunction with desulfurization systems, using target values determined experientially. A difficult process environment results from elevated slurry temperature, and the associated pH sensors can only last for a limited time under such conditions. Thanks to the expandability of wireless transmitters, the incremental cost is reduced thanks to the flexibility of installing new measurement loops. In regards to maintenance, the status of wireless devices is consistently transmitted alongside the process variable. Fewer manual checks are needed, and preventative measures may be reduced compared to wired networks.

Time Synchronized Mesh Protocol (TSMP) ensures correct timing for individual transmissions, which lets every transmitter’s radio and processor ‘rest’ between either sending or receiving a transmission. To compensate for the lack of a physical wire, in terms of security, wireless networks are equipped with a combination of authentication, encryption, verification, and key management. The amalgamation of these security practices delivers wireless network security equal to that of a wired system. The multilayered approach, anchored by gateway key-management, presents a defense sequence. Thanks to the advancements in modern field networking technology, interference due to noise from other networks has been minimized to the point of being a rare concern. Even with the rarity, fail-safes are included in WirelessHARTTM.

All security functions are handled by the network autonomously, meaning manual configuration is unnecessary. In addition to process control environments, power plants will typically use two simultaneous wireless networks. Transmitters allow both safety showers and eyewash stations to trigger an alarm at the point of control when activated. Thanks to reduced cost, and their ease of applicability in environments challenging to wired systems, along with their developed performance and security, wireless industrial connectivity will continue to expand.

Share your process measurement and control challenges with knowledgeable professionals, combining your own process knowledge and experience with their product application expertise to develop effective solutions.

Consolidated Tool Kit for Sensor Maintenance

temperature sensor and transmitter repair kit
Configured repair kit contains everything needed
Courtesy United Electric Cotnrols
Keeping things going, working, no matter your industry, is a continuous challenge. In process measurement and control operations, sensors and transmitters perform an essential function that often calls for immediate repair upon failure. Being properly prepared by having any needed parts on hand empowers technicians to quickly and effectively return sensor assemblies or transmitters to operation.

United Electric offers their "Sensor Box™" a kit that is preloaded with everything needed to effect temperature sensor and transmitter repairs in the field. The kit keeps everything needed in one spot, ready to go.

The video shows the convenience with which a technician can use the kit to make field repairs. Share your temperature measurement and process control challenges with product application experts, combining your own process knowledge with their product expertise to develop effective solutions.

Comparison of RTD and Thermocouple for Process Measurement

industrial temperature sensor rtd or thermocouple
Industrial Temperature Sensor
Courtesy Wika
Proper temperature sensor selection is key to getting useful and accurate data for maintaining control of a process. There are two main types of temperature sensors employed for industrial applications, thermocouple and resistance temperature detector (RTD). Each has its own set of features that might make it an advantageous choice for a particular application.

Thermocouples consist of a junction formed with dissimilar metal conductors. The contact point of the conductors generates a small voltage that is related to the temperature of the junction. There are a number of metals used for the conductors, with different combinations used to produce an array of temperature ranges and accuracy. A defining characteristic of thermocouples is the need to use extension wire of the same type as the junction wires, in order to assure proper function and accuracy.
Here are some generalized thermocouple characteristics.
  • Various conductor combinations can provide a wide range of operable temperatures (-200°C to +2300°C).
  • Sensor accuracy can deteriorate over time.
  • Sensors are comparatively less expensive than RTD.
  • Stability of sensor output is not as good as RTD.
  • Sensor response is fast due to low mass.
  • Assemblies are generally rugged and not prone to damage from vibration and moderate mechanical shock.
  • Sensor tip is the measuring point.
  • Reference junction is required for correct measurement.
  • No external power is required.
  • Matching extension wire is needed.
  • Sensor design allows for small diameter assemblies.
RTD sensors are comprised of very fine wire from a range of specialty types, coiled within a protective probe. Temperature measurement is accomplished by measuring the resistance in the coil. The resistance will correspond to a known temperature. Some generalized RTD attributes:
  • Sensor provides good measurement accuracy, superior to thermocouple.
  • Operating temperature range (-200° to +850°C) is less than that of thermocouple.
  • Sensor exhibits long term stability.
  • Response to process change can be slow.
  • Excitation current source is required for operation.
  • Copper extension wire can be used to connect sensor to instruments.
  • Sensors can exhibit a degree of self-heating error.
  • Resistance coil makes assemblies less rugged than thermocouples.
  • Cost is comparatively higher
Each industrial process control application will present its own set of challenges regarding vibration, temperature range, required response time, accuracy, and more. Share your process temperature measurement requirements and challenges with a process control instrumentation specialist, combining your process knowledge with their product application expertise to develop the most effective solution.

Setting Up the United Electric Controls Series One Safety Transmitter

Here is a two part tutorial showing how to setup your United Electric Series One Safety Transmitter. If you need any additional help or product information, reach out to a product specialist.

Part One Video

Part Two Video

Safety Transmitters For Temperature and Pressure

safety transmitter for industrial process control pressure temperature
Series One Safety Transmitter
United Electric Controls
Industrial history is replete with examples of catastrophic accidents. New safety technologies exist today that can prevent or mitigate mishap and disaster in fluid processing and other operations. Modern philosophy of plant safety brings a focus on a proactive approach. Process operators have a new sense of urgency to bring increased levels of safety to their operations.

The United Electric Controls (UE) Series One is a SIL-certified (Safety Integrity Level) transmitter designed solely for safety, alarm, and shutdown. With reliability, speed, and reduced nuisance trips an integral part of its design, the Series One is suitable for application in new installations, or easily integrated into existing operations.

A typical safety loop consists of sensors (such as a pressure or temperature transmitter), controllers, and final control elements. Most SIL-rated pressure transmitters require 300ms to communicate with the controller, then up to 500ms for the controller to send a signal to the final control element (such as a valve). This combined response time may insufficient for some applications. Incorporating the One Series Safety Transmitter, directly connected to the final control element, the total signal time is reduced to 100ms - a large and significant time savings when safe operating conditions have been breached. When used with blowers, pumps and compressors, the One Series makes up a complete safety system with a self-contained sensor, controller, and final control element (the switch) capable of SIL2 without additional safety instrumented function (SIF) components.

The below document provides detailed information about the Series One. Share your process safety challenges with the instrumentation specialists and combine your process knowledge with their product application expertise to produce effective solutions.



Miller Energy Introductory Video

Miller Energy is a Manufacturer's Representative and Distributor of Industrial Instrumentation and Process Control Equipment. Since 1958, Miller been committed to exceeding our customers expectations by providing an unparalleled level of customer service and local technical support. Miller Energy maintains two office locations in NJ and PA. The South Plainfield, NJ operation services the areas of Northern NJ, New York, and Fairfield County Connecticut and serves as our corporate headquarters. The Exton PA office serves the areas of Southern NJ, Eastern PA, Delaware and Maryland.


Safety Transmitters Achieve Safety Goals With Reduced Cost and Complexity


safety transmitter for temperature, pressure, differential pressure applications in industrial process control
Series One Safety Transmitter
United Electric Controls
Process safety experts continually seek sustainable ways to improve the performance of safety critical loops, achieving risk reduction and safety goals in a cost-effective manner. Some view a reduction in complexity of safety related protocols to be a positive development. Traditional or historical approaches to deploying full blown safety systems were generally associated with great expense and high complexity, and still came up short on delivering the needed levels of risk reduction. Process control device and equipment manufacturers have responded with newer technologies and products that better address the safety needs of industrial processing.

In sensor subsystems, United Electric’s certified safety transmitter for pressure or temperature provides a less costly, simple path for process designers, instrument and control engineers, and maintenance personnel. The Series One Safety Transmitters combine several useful safety and monitoring functions into a single, easy to deploy device. Products are available for gauge pressure, differential pressure, and temperature applications. In addition to a 4-20 mA process variable output, the Series One has an embedded programmable high-capacity relay certified as a safety variable output. The Series One Safety Transmitter provides designers the option of a hard wired trip in less than 100 milliseconds, with a tenth of a percent repeatability, along with the monitoring functions of a traditional continuous analog output.

For equipment under control requiring protection, or processes where rapid excursions can initiate dangerous events, this unique pressure and temperature transmitter is addressing process safety time constraints, coupling issues with PLC and DCS units, and adding diversity to the safety instrumented function.

There is a whole lot more to learn about these "Safety right out of the box" industrial pressure and temperature safety transmitters. A product data sheet is provided below, but you can get the latest and most detailed product and application information from a specialist in industrial process measurement and control. Share your safety instrumentation challenges with them, combining your process expertise with their product application knowledge to develop effective solutions.



Energy Calculator Simplifies Chilled and Hot Water Usage Monitoring

Operator interface of Yokogawa Model 212 Heat Calculator for process monitoring
Yokogawa Model 212 Heat Calculator
Early in my professional career, I was a sales rep calling upon building engineers, maintenance technicians, and lots of HVAC related people. One encounter I had, many years ago, has always stayed with me. I was prattling on to a building engineer about whatever gear I was trying to promote for his chilled water system, and I must have really missed the mark. The engineer, clearly a man of superior experience to mine, stopped me in mid sentence. "You know what flows through these pipes?", he said, referring to the chilled water system. In my defense, I was very young and inexperienced at the time, but I did answer "Chilled water". My building engineer friend bellowed out, "Wrong....money flows through those pipes". That single encounter had a lasting impact upon how I viewed HVAC systems.

Energy costs for heating or cooling a building can be the single largest line item on the cash outflow summary for an operation. Much effort and expense is put into efforts to maximize energy efficiency and conservation. Monitoring of usage patterns related to the chilled or hot water system can provide useful information for developing new conservation strategies and verifying the impact of any steps taken to reduce consumption.

The Yokogawa Model 212 is an affordable and easy to install and use device that will provide a stream of usage data. A key feature of the Model 212 is its ability to interface with a broad range of flowmeter devices, including vortex and magnetic flowmeters with pulse outputs, positive displacement and inferential water meters, turbine and paddlewheel flowmeters. This flexibility allows the user to select a companion flowmeter that will suit their accuracy, budget, and operational requirements.

The Heat Calculator has four modes of operation to totalize the usage patterns in a manner that best suits the needs of the user. Additionally, the unit can interface with a building management system and includes internal data logging capabilities. Other features are described in the product data sheet I have included below.

Even small chilled and hot water systems can benefit from usage data derived from a monitoring system such as the Yokogawa Model 212. Share your system challenges with a product specialist. Combining your process and system knowledge with their product application expertise will produce effective solutions.


Data Acquisition - A Step in the Direction of Process Improvement

Data acquisition, like an equipment acquisition, is the procurement of an asset. Data is an asset. It helps an operator evaluate process or business conditions and make decisions that impact the success of the organization. Let’s define data acquisition as the sampling of signals that represent a measurement of physical conditions and the conversion of those signals into a numeric form that can be processed by a computer. A data acquisition system will generally consist of sensors, transmitters, converters, processors, and other devices which perform specialized functions in gathering measurements and transforming them into a usable form.

Industrial data acquisition equipment
DAQ incorporating data acquisition, process
control, recording, display and networking
in a single compact unit
Courtesy Yokogawa Corp.
Industrial process operators and stakeholders benefit from the collection and analysis of data by enhancing performance of valuable facets of the process or activity. Data acquisition, commonly known as DAQ, is widely employed in high stakes and sophisticated processes where there is a true need to know current conditions. A desire for increased profit drives the need for increased process output and efficiency. A desire to reduce risk of loss drives the need for reduced downtime and improved safety. Today, there are likely many useful applications for data acquisition that are not being tapped to their fullest potential. The modest cost and simplicity of putting a data acquisition system in place, compared to the benefits that can be derived from a useful analysis of the data for your operation or process, makes the installation of a data acquisition system a positive move for even small and unsophisticated operators in today’s market.

What we call DAQ today started in the 1960’s when computers became available to businesses of large scale and deep pockets. By the 1980’s, personal computers employed in the business environment could be outfitted with input cards that enabled the PC to read sensor data. Today, there is an immense array of measurement and data collection devices available, spanning the extremes of price points and technical capability. For a reasonable cost, you can measure and collect performance data on just about anything. You can get an impression of the simplicity, modularity, and compactness of a modern system with a quick review of this product.

Data acquisition has an application anywhere an operator or stakeholder can benefit from knowing what is occurring within the bounds of their process or operation. Here is a partial list of the many physical conditions that can be measured in industrial settings:


Industrial data acquisition equipment
Other examples of industrial data acquisition equipment
Courtesy Yokogawa Corp.
  • Temperature
  • Pressure
  • Flow
  • Force
  • Switch Open or Closed
  • Rotational or Linear Position
  • Light Intensity
  • Voltage
  • Current
  • Images
  • Rotational Speed

Consider your industrial process or operation. Are there things you would like to know about it that you do not? Would you like to increase your insight into the workings of the process, how changes in one condition may impact another? Do you know what operating condition of each component of your process will produce the best outcomes? Is reducing maintenance, or heading off a failure condition before it occurs something you would like to have in your operation? Applying your creativity, ingenuity and technical knowledge, along with the help of a product expert, will help you get the information you need to improve the outcomes from your industrial process or operation.

Welcome to the Process Measurement, Instrumentation and Control Blog, sponsored by Miller Energy

Welcome! We hope (over time) you find this blog interesting to visit and it becomes a trusted resource for process measurement and control. We plan on weekly educational and informative blog posts innovative process control solutions, insight to how industrial controls work, and new products that solve tough engineering challenges. Please come back often!