Showing posts with label process measurement. Show all posts
Showing posts with label process measurement. Show all posts

Magnetic Flow Meters

magnetic flowmeter flow meter on large flanged lined pipe section
Magnetic flow meters can be easily applied in lined
pipe sections and those of substantial diameter.
Image courtesy Yokogawa
The measurement of fluid flow is a common process control function. Flow measurement can have a range of differing output requirements, depending upon the needs of the process operators. With many technologies and instruments from which to choose, knowledge of the principals behind each measurement technology and basic operation requirements can help in the selection of the best instrument for each application. 

Anywhere there are pipes, somebody wants to know how much fluid is passing through them. Industrial flow meters rely on their ability to measure the change in some physical characteristic of fluid moving within a pipe that can be related to fluid velocity or mass flow. Depending upon the nature of the raw measurement, additional information and processing may be necessary to convert the base measurement into a useful measurement of flow rate.

In the processing industries, differing technologies are used to measure fluid motion. Some common technologies include magnetic, ultrasonic, vortex shedding, Coriolis and differential pressure. This list is not exhaustive, and several other technologies will certainly be found in use. Each methodology survives within a competitive marketplace due to its unique combination of performance and value attributes. Let's look at magnetic flow meters, also referred to as magmeters.

The operational principle of a magnetic flow meter is based upon Faraday’s Law. This fundamental scientific principle states that a voltage will be induced across a conductor moving at a right angle through a magnetic field, with the voltage being proportional to the velocity of the conductor. The principle allows for an inherently hard-to-measure aspect of a conductive fluid to be expressed via the magmeter. In a magmeter application, the instrument produces the magnetic field referred to in Faraday’s Law. The conductor, moving at a right angle to the magnetic field, is the fluid. The actual measurement of a magnetic flow meter is the induced voltage corresponding to fluid velocity. This can be used to determine volumetric flow and mass flow when combined with values of other fluid properties and the pipe cross sectional area. Magnetic flow meters enjoy some positive application attributes.
  • Magnetic flow meters have no moving parts.
  • The instrument, which often resembles a pipe section, can be lined with corrosion resistant material for use with aggressive media.
  • With no sensor insertions or obstructions in the fluid path, the impact of the instrument on the flow is minimal.
  • Accuracy, when compared to other technologies, is high.
  • Application to laminar, turbulent, and transitional flow profiles is permissible.
  • Generally, measurement is not adversely impacted by fluid viscosity, specific gravity, temperature and pressure.
  • Magnetic flow meter technology can be applied to a very wide range of pipe sizes.
  • Device responds rapidly to changes in fluid flow.
  • Can be successfully applied to liquids containing heavy particulates.
  • Generally long service life with little maintenance.
Though the roster of positive attributes is strong, magmeters are not universally applied. Consider some of these points with respect to your potential application.
  • The fluid acts as the "conductor", as stated in Faraday's Law. Magnetic flow meters only work on liquids with conductivity above a certain threshold. They may be unsuitable for use with hydrocarbons and high purity water for this reason.
  • Cannot be used to measure gas flow because gases are not sufficiently conductive.
  • Piping must be grounded.
  • Generally, rated accuracy requires the pipe cross section to be filled by the liquid being measured.
This listing of attributes is very general in nature. Some magnetic flow meter variants have adaptations that minimize or accommodate the impact of special process conditions. Share your flow measurement requirements and challenges with a process measurement specialist. Your own knowledge and experience will be leveraged into an effective solution by their product application expertise.

Focus Your Product Selection Quickly With This Useful Tool

Yokogawa Process Instrumentation Selection Tool
The Process Instrumentation Selection Tool from Yokogawa
enables the user to make detailed product selections
with a few clicks.
Image courtesy Yokogawa
In the process measurement sphere, manufacturers respond to market demand and their own growth goals by offering integrated product solutions. This can result in a product offering that is extensive, with many different products that can be applied to the same task. There are often several, or many, choices to winnow down to a final selection. Product research and evaluation for application suitability takes time. In today's business environment, time is what we never seem to have in sufficient quantity. Finding ways to streamline any process can be beneficial.

Yokogawa is one of those companies that manufactures a broad range of products for process measurement. Whatever your process measurement needs, it is likely the Yokogawa has an effective solution that delivers solid quality and performance.

In a past blog posting, we introduced readers to Process Instrument Selection Tool. With some basic information about your application, a few clicks can quickly deliver access to the best product selection for an application. It is simple, rapid and accurate. The product selector covers 24 basic measurement and instrumentation classifications. We are posting about it again because it has been so successful in helping customers zoom in on the right product solutions for their process measurement applications.

The Product Finder is accessible through a number of links throughout Yokogawa's network of representatives. Clicking the link lands you on the start page of the Product Finder. Try it out, and share your process measurement and control challenges with application specialists for even more leveraging of your own process knowledge and experience toward an effective solution.

Magnetic Level Indicators

magnetic level gauge magnetic level indicator
Configurations of magnetic level gauges
Image courtesy Orion/Magnetrol
Fluid process control operations often involve vessel or tank storage of liquids. Continuous and accurate indication of the liquid level within the tank is an essential data point for process control decision making and safety. Several methods and instrument types are available for tank level measurement, each with its own set of attributes that may be advantageous for a particular installation. Selection criteria for a tank liquid level indicator may include:
  • Direct or indirect measurement of level
  • Level measurement accuracy and reliability
  • Tank shape, regular or irregular
  • Media compatibility with measurement device
  • Requirements for maintenance or calibration
  • Compatibility with process temperature and pressure range
  • Local display and visibility
  • Level indication signal type and transmission
  • Level alarm switches or other indicators
The selection of a magnetic level indicator, also referred to as a magnetic level gauge, for the project will likely be based upon at least one of the instrument's strengths. Magnetic level gauges have a host of potentially positive features for level indication.
  • Continuous level measurement
  • Operable without electric power
  • Direct visual tank fluid level indication, regardless of tank shape or profile.
  • Wide range of operating temperature and pressure
  • Breakage resistant construction
  • Range of construction materials available to accommodate corrosive media
  • Measuring indicators, switches, and transmitters mounted externally, without contacting the medium being measured.
  • Low maintenance operation.
  • Readable level indication from greater distance than glass sight gauges.
  • Applicable to large fluid level ranges with a single instrument.
Magnetic level indicators have a strong position in the tank liquid level measurement field and should be considered as a candidate for fulfilling those application requirements. There are many options available to customize the level indicator for each specific application. I have included a technical data sheet from Orion Instruments, a manufacturer of level instrumentation, for more detail. Share your application challenges with a sales engineer that specializes in level measurement. Combining your process knowledge with their product application expertise will yield positive solutions.


Magnetic Flowmeters: Principles and Applications

industrial process measurement instrument magnetic flow meter magmeter volumetric flow transmitter
Magnetic flowmeters are well suited for flow measurement
with conductive fluids.
Image courtesy Yokogawa
Fluid process control operations rely on the operator's ability to accurately determine qualities and quantities of liquid or gaseous materials. In terms of appraising and working with fluids (such as liquids, steam, and gases) the flowmeter is a staple tool, with the simple goal of expressing the delivery of a subject fluid in a quantified manner. Measurement of media flow velocity can be used, along with other inputs, to determine volumetric or mass flow. The magnetic flowmeter, also called a magmeter, is one of several technologies used to measure fluid flow.

In general, magnetic flowmeters are sturdy, reliable devices able to withstand hazardous environments while returning accurate measurements to operators of a wide variety of processes. The magnetic flowmeter has no moving parts. The operational principle of the device is powered by Faraday’s Law, a fundamental scientific principle stating that a voltage will be induced across any conductor moving at a right angle through a magnetic field, with the voltage being proportional to the velocity of the conductor. The principle allows for an inherently hard-to-measure quality of a substance to be expressed via the magmeter. In a magmeter application, the meter produces the magnetic field referred to in Faraday’s Law. The conductor is the fluid. The actual measurement of a magnetic flowmeter is the induced voltage corresponding to fluid velocity. This can be used to determine volumetric flow and mass flow when combined with other measurements.

The magnetic flowmeter technology is not impacted by temperature, pressure, or density of the subject fluid. It is however, necessary to fill the entire cross section of the pipe in order to derive useful volumetric flow measurements. Faraday’s Law relies on conductivity, so the fluid being measured has to be electrically conductive. Many hydrocarbons are not sufficiently conductive for a flow measurement using this method, nor are gases. On the other hand, water and aqueous solutions tend to exhibit sufficient conductivity to apply magmeter technology.

Magmeters apply Faraday’s law by using two charged magnetic coils; fluid passes through the magnetic field produced by the coils. A precise measurement of the voltage generated in the fluid will be proportional to fluid velocity. The relationship between voltage and flow is theoretically a linear expression, yet some outside factors may present barriers and complications in the interaction of the instrument with the subject fluid. These complications include a higher amount of voltage in the liquid being processed, and coupling issues between the signal circuit, power source, and/or connective leads of both an inductive and capacitive nature.

In addition to salient factors such as price, accuracy, ease of use, and the size-scale of the flowmeter in relation to the fluid system, there are multiple reasons why magmeters are the unit of choice for certain applications. They are resistant to corrosion, and can provide accurate measurement of dirty fluids – making them suitable for wastewater measurement. As mentioned, there are no moving parts in a magmeter, keeping maintenance to a minimum. Power requirements are also low. Instruments are available in a wide range of configurations, sizes, and construction materials to accommodate various process installation requirements.

As with all process measurement instruments, proper selection, configuration, and installation are the real keys to a successful project. Share your flow measurement challenges of all types with a process measurement specialist, combining your own process knowledge and experience with their product application expertise to develop an effective solution.

Product Update: SMARTDAC+ GX/GP Series Recorders & GM Series Data Acquisition System Release 4

industrial process control data acquisition equipment
Updated SMARTDAC line of data acquisition instruments
Image courtesy Yokogawa
Yokogawa Electric Corporation announced it's Release 4 of the SMARTDAC+® GX series panel-mount type paperless recorder, GP series portable paperless recorder, and GM series data acquisition system.

With this latest release, new modules are provided to expand the range of applications possible with SMARTDAC+ systems and improve user convenience. New functions include sampling intervals as short as 1 millisecond and the control and monitoring of up to 20 loops.

Overview


Recorders and data acquisition systems (data loggers) are used on production lines and at product development facilities in a variety of industries to acquire, display, and record data on temperature, voltage, current, flow rate, pressure, and other variables. Yokogawa offers a wide range of such products, and is one of the world’s top manufacturers of recorders. Since releasing the SMARTDAC+ data acquisition and control system in 2012, Yokogawa has continued to strengthen it by coming out with a variety of recorders and data acquisition devices that meet market needs and comply with industry-specific requirements and standards.

With this release, Yokogawa provides new modules with strengthened functions that meet customer needs for the acquisition and analysis of detailed data from evaluation tests. These modules decrease the cost of introducing a control application by eliminating the need for the purchase of additional equipment.

Enhancements


The functional enhancements available with Release 4 are as follows:

High-speed analog input module for high-speed sampling.


To improve the safety of electric devices such as the rechargeable batteries used in everything from automobiles to mobile devices, evaluation tests must be conducted to acquire and analyze detailed performance data. For this purpose, sampling at intervals as short as 1 millisecond is desirable. However, this normally requires an expensive, high-performance measuring instrument. When the new high-speed analog input module, a SMARTDAC+ system can sample data at intervals as brief as 1 millisecond, which is 1/100th that of any preceding Yokogawa product. This is suitable for such high performance applications such as measurement of the transient current in rechargeable batteries to vibration in power plant turbines. A dual interval function has also been added that enables the SMARTDAC+ to efficiently and simultaneously collect data on slowly changing signals (e.g., temperature) and quickly changing signals (e.g., pressure and vibration).

PID control module for control function


In applications that need both control and recording, such as controlling the temperature of an industrial furnace or the dosage process at a water treatment plant, there is a need for systems that do not require engineering and can be quickly and easily commissioned. In a typical control and monitoring application, a separate recorder and controller is required to control temperature, flow rate and pressure. At the same time, a data acquisition station must communicate with the controller to ensure data is being capture and recorded. It is time consuming and oftentimes confusing, to ensure the controller and the data acquisition station is communicating seamlessly. By combining continuous recording function of the SMARTDAC+ and PID control module into a single platform, customers can now seamlessly control and record critical process data in one system. The SMARTDAC+ can control, monitor and record up to 20 loops. Each PID control module comes with 2 analog inputs, 2 analog outputs, 8 digital inputs and 8 digital outputs.

Four-wire RTD/resistance module for precise temperature measurement


While three-wire RTDs are widely used in many fields such as research institutes to manufacturing, some applications require higher level of precision and accuracy that is only possible with 4-wire RTDs. A 4-wire RTD is the sensor of choice for laboratory applications where accuracy, precision, and repeatability are extremely important. To satisfy this need, Yokogawa has released a 4-wire RTD/resistance module for the SMARTDAC+.

Target Markets


GX series: Production of iron and steel, petrochemicals, chemicals, pulp and paper, foods, pharmaceuticals, and electrical equipment/electronics; water supply and wastewater treatment facilities.

GP series: Development of home appliances, automobiles, semiconductors, and energy-related technologies; universities; research institutes.

GM series: Both of the above target markets.

For more information on the SMARTDAC+ GX/GP Series Recorders & GM Series Data Acquisition System contact Miller Energy at (800) 631-5454 or by visiting the company website.

Yokogawa ROTAMASS "Total Insight" Line of Coriolis Flowmeters

In the last decade, the use of Coriolis flow meters has been changing from general purpose to supporting customer needs in specific applications. While the technological complexity increased, the demand for simple operation and handling also grew.

Yokogawa answers these needs by offering six dedicated product lines with two specialized transmitters allowing the highest flexibility - the ROTAMASS Total Insight.

Total Insight

The ROTAMASS philosophy gives Total Insight throughout the whole lifecycle.

To facilitate the implementation of optimal processes and increase the efficiency of personnel, Yokogawa has placed a strong focus on simplifying fundamental operating concepts with Total Insight. The Total Insight concept is built in to the latest generation of Rotamass transmitters and provides enhanced settings for customized setups, predefined trend views, or multiple configuration sets for fast changeover in batch production.

ROTAMASS NANO - When every drop counts

The world's smallest dual bent tube Coriolis flow meter series for highly accurate measurement at lowest flows.

The dual tube design compensates for fluctuations of density, temperature, pressure and environment conditions. This provides a consistent repeatable and accurate measurement especially for small size Coriolis flow meters.

Typical Applications
coriolis flow meter yokogawa nano
  • Batching
  • Dosing
  • Blending
  • Chemical injection
  • Dosing systems
  • High pressure gases
  • Liquid and gas low flow measurement
  • Precision coatings
  • Metering pump control
  • Metrology
  • R&D laboratory
  • Vacuum thin film coating

ROTAMASS Prime - Versatile in applications

The favorably priced and versatile Coriolis flow meter with lowest pressure drop in the market. Ideal for a broad range of standard applications, this series is a flexible and cost effective solution for highly accurate flow and density measurements.coriolis flow meter yokogawa prime
Features such as concentration measurement or the Tube Health Check function allow the meter to be adjusted to customer needs.
  • Typical Applications
  • Batching
  • Blending
  • Chemical recovery
  • Continuous reaction
  • In-line concentration and density measurement
  • Catalyst feed
  • Filling and dosing
  • Mass balance
  • Net oil computing
  • Palm oil
  • Process control

ROTAMASS Supreme - Experience meets innovation

The most accurate Coriolis flow meter with industry’s best zero stability.

The successful Rotamass series has been progressively developed and is also newly equipped with
industrial coriolis flow meter
the latest technology. This meter delivers unsurpassed performance for demanding and critical applications with superior aeration handling and advanced diagnostic functionality.

  • Typical Applications
  • Batching
  • Burner control
  • Feed and product control
  • Filling and dosing
  • Gas void fraction
  • In-line concentration and density
  • Loss control
  • Material and mass balance
  • Net oil computing
  • Process control
  • Solvents
  • Water cut

ROTAMASS Intense - Safe under high pressure

The Coriolis meter with the most robust and durable design for precise measurement in high pressure applications.
industrial coriolis flow meter

Safety is always a concern and especially when operating at high pressures. Therefore, this series has been designed to meet the highest safety requirements. Combined with advanced diagnosis such as the “Total Health Check” function, operation is always under secure control.

  • Typical Applications
  • Chemical injection
  • Compressed gases
  • Fuels
  • Glycol TEG/MEG
  • High pressure gases
  • Hydraulic oil
  • Hydrocarbons
  • Liquified gases
  • Natural gas hydration
  • Offshore and onshore
  • Oil refinery processes
  • Solvents

ROTAMASS Hygienic - With pure dedication

Specifically designed and certified for food & beverage, biotechnology and pharmaceutical utility applications.
industrial coriolis flow meter

This series is the appropriate answer to the daily constraints of hygienic processes ensuring continuous product quality and minimizing losses. This is made easy by the provided multi-variable measurement and various dedicated features.

  • Typical Applications
  • Bioreactor feeds
  • Bottling
  • Carbonation of beverages
  • Deionized water
  • Fermentation
  • Juice processing
  • Molasses measurement
  • Online sugar concentration
  • Raw milk tanker unloading
  • Process water reclamation
  • Product quality control
  • Sugar industry

ROTAMASS Giga - Big in performance

Delivering best in class accuracy and most flexible installation at high flow rates.

The unmatched accuracy at the low end of the measuring range offers maximum flexibility from engineering to final operation. This series unifies a long service life with low maintenance costs and reliable performance.
industrial coriolis flow meter


  • Typical Applications
  • Bitumen
  • Distribution networks
  • Drilling mud
  • LNG
  • Rail car loading
  • Ship loading
  • Truck loading
  • Tar
  • Offshore and onshore
  • Oil well cementing and hydrofracturing

Essential and Ultimate Transmitters

Future Ready. The ROTAMASS TI product family has a common and unified transmitter platform with two options that provide the highest flexibility and a tailor-made solution. The Essential transmitter is the cost effective solution for general purpose applications, and the Ultimate transmitter provides various additional features for best-in-class measurement.

Essential Transmitter

industrial pressure transmitter

  • Wizard for easy setup and guidance through the main configuration
  • “Event Management” as unique and useful support to run the process effectively and safely
  • Data mobility provided by microSD card for easy transfer to other devices for fast setup or to pc for in-depth process analysis or remote service
  • Widest range of I/O combinations in the market for most flexible adjustment to the existing system periphery
  • Universal power supply to install the device anywhere in the world
  • HART communication

Ultimate Transmitter
industrial pressure transmitter

  • Patented “Tube Integrity” function and “TotalHealth Check” for inline meter verification without disturbing running measurements
  • “Features on demand” for easy expansion of special functions via software activation key
  • Batching function combined with multiple configuration sets to support fast changeover
  • “Dynamic Pressure Compensation” for consistently accurate and stable measurement even with significant fluctuations in operating pressures
  • Inline concentration measurement
  • Integrated net oil computing acc. API standard
Share your process flow measurement requirements and challenges with application experts, combining your own experience and knowledge with their product application expertise to develop effective solutions.

Water Quality Analysis – Constituent Survey Part 3

industrial water quality represented as bubbles
Water quality can be a concern for process input or effluent
What we know as “water” can consist of many non-H2O components in addition to pure water. This three part series has touched on some of the constituents of water that are of interest to various industrial processors. The first installment reviewed dissolved oxygen and chloride. The second article covered sulfates, sodium, and ammonia. 

To conclude the three part series on water quality analysis in process control related industrial applications we examine silica, another element which in sufficient quantities can become a confounding variable in water for industrial use. In natural settings, silica, or silicon dioxide, is a plentiful compound. Its presence in water provides a basis for some corrosion-inhibiting products, as well as conditioners and detergents. Problems arise, however, when high concentrates of silica complicate industrial processes which are not designed to accommodate elevated levels. Specifically, silica is capable of disrupting processes related to boilers and turbines. In environments involving high temperature, elevated pressure, or both, silica can form crystalline deposits on machinery surfaces. This inhibits the operation of turbines and also interferes with heat transfer. These deposits can result in many complications, ranging through process disruption, decreased efficiency, and resources being expended for repairs.

The silica content in water used in potentially affected processes needs to be sufficiently low in order to maintain rated function and performance. Silica analyzers provide continuous measurement and monitoring of silica levels. The analyzers detect and allow mitigation of silica in the initial stages of raw material acquisition or introduction to prevent undue disruption of the process. Additionally, a technique called power steam quality monitoring allows for the aforementioned turbine-specific inhibition – related to silica conglomerates reducing efficacy and physical movement – to be curtailed without much issue. The feedwater filtration couples with a low maintenance requirement, resulting in reduced downtime of analytic sequences and a bit of increased peace of mind for the technical operator.

While silica and the other compounds mentioned in this series are naturally occurring, the support systems in place to expertly control the quality of water is the most basic requirement for harvesting one of the earth’s most precious resources for use. As a matter of fact, the identification and control of compounds in water – both entering the industrial process and exiting the industrial process – demonstrates key tenets of process control fundamentals: precision, accuracy, durability, and technological excellence paired with ingenuity to create the best outcome not just one time, but each time.

Applying Coriolis Flowmeters

coriolis flowmeter for industrial process measurement
Coriolis Flowmeter
Courtesy Yokogawa
Coriolis mass flow meters are widely used throughout the process measurement and control field. Their basic operating principle, combined with modern sensor and signal processing technology, provide a list of potential application advantages.
  • Directly measure mass flow based on the principle of measurement.
  • No "moving" parts (except the slightly vibrating sensor tubes).
  • Coriolis sensors have the ability to measure flow of non-conductive fluids.
  • Measure the mass flow rate with high accuracy.
  • Instruments can be applied across a wide usable measurement range.
  • Deliver density measurement based on oscillating frequency.
  • Not materially impacted by fluid viscosity or density.
  • Coriolis flow meters also do not need lengthy straight pipe sections upstream or downstream of the sensing unit.

SELECTION AND INSTALLATION RECOMMENDATIONS


Some considerations for product selection and installation of Coriolis mass flow meters:

  • Rapid temperature changes within the measured medium can impact measurement accuracy.
  • Wide ranges of connection types are available, specify the best match for your system.
  • Select sensor tube construction material to accommodate media characteristics.
  • For liquid measurement, the sensor tube will extend downward from a horizontal pipe run. 
  • As with most industrial products, there may be restrictions on where the device may be used. For example, not for use in aircraft. Assure that your application conforms with the intended usage of the instrument.
  • Install at least one tight shutoff valve adjacent to the instrument for purposes of zeroing. Isolation valves for inlet and outlet are preferred.
  • Follow manufacturer recommendations for pipe supports, if required, at inlet and outlet sides of the unit
  • Avoid installation at locations with high levels of vibration or strong electrical fields.
  • Locate the sensor unit at the lowest practical level in the piping system. This helps avoid collection of gas bubbles in the sensor tubes.
  • Sensor tubes need to be completely filled with subject medium to obtain accurate measurement.
  • Avoid the use of flexible connections and reducers at the unit connection points, unless in accordance with specific manufacturer guidelines.
The Coriolis flow meters of different manufacturers may have some particular recommendations, all of which should be followed to insure the best available performance, safety, and longevity of the unit.

Share your process instrumentation challenges and requirements with process measurement specialists, combining your process knowledge and expertise with their product application experience to develop effective solutions.

Diaphragm Pressure Gauges for Industrial Process Measurement

diaphragm pressure gauge for industrial process measurement
Example of a diaphragm pressure gauge
Courtesy Wika
Diaphragm pressure gauges, like every device and instrument intended for use in industrial process measurement and control, have their own set of attributes making them an advantageous choice for some range of applications. Silvia Weber, product manager at Wika, a globally recognized leader in the field of pressure and temperature gauges, wrote an article for Process Worldwide (process-worldwide.com/) about diaphragm pressure gauges.

The article is included below and provides a comparison of the differences between Bourdon tube and diaphragm operating mechanisms, focusing on design and operational features of diaphragm pressure gauges and the range of application criteria for which they may be the best choice.

Pressure gauges are utilized in most operations where fluids are moved through a system. Gauges, though mechanical in operation, remain a mainstay of fluid operations because of their reliability, local display, ruggedness, and lack of reliance on electric power for operation. There are countless pressure gauge configurations to suit every application. Specifying the best gauge configuration for an application is accomplished by combining your process knowledge with the application expertise of a product specialist.


Industrial Process Gauges - New Product Guide

industrial pressure gauge
One of the many pressure gauge versions
employed throughout industry
Courtesy Ametek - U.S. Gauge
Even with the large growth in the use of electronic measurement instruments throughout the process control sphere, mechanical gauges and indicators remain an important part of process measurement and control operations.

A broad line of industrial gauges and diaphragm seals is available from U.S. Gauge. The company has consolidated its offering into a product guide that provides simple and quick reference to the various product series.

For pressure:

  • Process Gauges
  • Liquid Filled Gauges
  • Test Gauges
  • General Equipment Gauges
  • Special Application Gauges

For temperature:

  • Adjustable Bimetallic Thermometers
  • Thermowells
  • Industrial Bimetallic Thermometers
  • Multi-Angle Industrial Thermometers
  • Digital Thermometers
  • Glass Tube Thermometers
The product guide also includes diaphragm seals and a range of electronic indicators, as well.

The guide illustrates gauges for every industrial application. Share your process measurement and control challenges with product application specialists, combining your process knowledge with their product application expertise to develop effective solutions.



V-Cone® Flow Meter Conditions Flow For Accurate Measurement



Accurate measurement of fluid flow is a process requirement in many industrial operations. There are numerous methods employed in the measurement of fluid flow, of which the McCrometer V-Cone® is one entry with very particular advantages. Whether the application involves liquid, steam, or gas, this flow meter design, with its own flow conditioning built in, provides exceptional differential pressure flow measurements in a space saving format.

The video provides a clear illustration of how the V-Cone® design conditions fluid flow in order to provide better DP measurement performance. Share your flow measurement challenges with application specialists, combining your process expertise with their depth of product application knowledge to develop effective solutions.

Miller Energy Introductory Video

Miller Energy is a Manufacturer's Representative and Distributor of Industrial Instrumentation and Process Control Equipment. Since 1958, Miller been committed to exceeding our customers expectations by providing an unparalleled level of customer service and local technical support. Miller Energy maintains two office locations in NJ and PA. The South Plainfield, NJ operation services the areas of Northern NJ, New York, and Fairfield County Connecticut and serves as our corporate headquarters. The Exton PA office serves the areas of Southern NJ, Eastern PA, Delaware and Maryland.


Yokogawa Data Acquisition Unit Product Changes

data acquisition units for process control and automation
The DX1000 and DX2000 are among the potential
replacements for the discontinued CX Series
Modern industrial process control has ever increasing demands for data acquisition. The ability to rapidly gather and process measurements into control and management decisions and reports is essential to efficiency, safety, and profitability. Yokogawa has been a leading manufacturer in the data acquisition sphere for decades, and has made some changes in its product line to maintain its leadership position.

The model CX 2000 was discontinued at the end of February. It combined data acquisition, display, control, and networking in a single unit. A scaled down version, CX 1000 was previously discontinued. The company recommends possible replacements to include one or more of the following products:

  • Advanced Application Temperature Controller UT75A
  • Button Operated DX1000/DX2000
  • General Purpose Temperature Controller UT35A/UT32A
  • Mid-level Temperature Controller UT55A/UT52A
  • TC10 Temperature Controller
  • Touch Screen GX10/GX20
  • US1000 Digital Indicating Controller
  • UTAdvanced UT32A-D
  • UTAdvanced UT32A-V/C/R
The DX2000 Daqstation is a mature product with a solid portfolio of field installations. It can accommodate display, recording, networking, and storage of data on up to 48 input channels. Input types include DC voltage, contact signal, RTD, and thermocouple. Ethernet connection enables remote access via a website and the unit can provide email alerts. There are numerous effective and user-friendly features included with the DX2000, which incorporates Yokogawa's decades of experience with recording and data acquisition.

Whatever your data acquisition needs and challenges, the best solutions will result from combing your process expertise with the knowledge of a product specialist. Reach out to them and get results.


Save Time And Get The Right Product With Yokogawa Automated Selection Tool

Yokogawa Corporation of America, an industry recognized source for innovative process measurement and control products, has made available an easy to use product selection tool for those navigating through the company's extensive product offering. The Product Finder is a great time saver that enables a user to quickly locate product and technical information on Yokogawa process instrumentation products meeting the user's selected criteria.

Let's step through a quick example. You will see how this quick and easy to use tool saves time by navigating quickly to the website pages detailing products meeting your requirements.

The Product Finder is accessible through a number of links throughout Yokogawa's network of representatives. Clicking the link lands you on the start page of the Product Finder. For this example, I am going to search for a flow meter with the following characteristics:


  • Mass flow measurement 
  • Non-conductive liquid
  • Accuracy of 1%
  • Flow measurement device must have an integral transmitter
  • Tri-clamp connections



Above, I declared my location as United States. The next step, shown below, is to select "Flow" as the measurement parameter. You will see in the drop down menu that there are many measurement elements that can be selected, with Yokogawa products for each.


My selection of "Flow" from the drop down menu returns all of the company's flow measurement devices, of which there are many (this cropped screenshot, shown below, only shows four, but there were many more) . This is where the selector really helps you. Instead of examining several or many different models, the user can focus the search by adding more product characteristics. You can see the list of prompting questions on the left side of the page. Providing additional characteristics by answering the prompting questions will narrow the search results to the show only the products meeting all the criteria specified by the user.



The next image (below) shows all of my sample product attributes entered on the left column. Note that there is now only a single product that matches all of my sample criteria. The whole process took less than two minutes. By clicking on the "View More Details" button below the product image, I gain access to all of the available technical, support, and product data for my selected flow measurement device.


The process instrumentation specialists at Miller Energy are available to provide additional help in meeting your measurement challenges. Combine their product knowledge and expertise with your process know-how for the best solutions.

New Level Transmitter From Orion Instruments

Orion magnetostrictive level transmitter
Direct insertion and external mount versions of
Orion JM4 Magnetostrictive Level Transmitter
Courtesy Orion Instruments
Orion Instruments, a world class manufacturer of magnetic level indicators, level switches, and level transmitters, has released a new product for use in the industrial process measurement and control field. Their Jupiter Model JM4 magnetostrictive transmitter incorporates the company's many years of research, development, and field experience to provide a safer, simpler, and smarter transmitter for liquid level measurement and control.

The new model from Orion boasts level measurements with accuracy as high is +/-0.05" (1.27mm). The transmitter head can be rotated up to 310 degrees with an option for remote mounting. Variants are available for direct insertion or external mounting, with approvals for a number of area classifications. There are other valuable features to this series of level measurement instruments that reflect Orion's expertise in the field.

Browse the new product brochure included below. It provides illustrations of the product and its operating principle, along with dimensioned drawings and a listing of all the product options and variants. You can always obtain whatever information you need about Orion level measurement instruments from a product specialist. Share your liquid level measurement challenges and requirements with them for recommendations on the best solutions.




Coriolis Mass Flow Meter - Operating Principle, Applications, Advantages

Coriolis flow meter by Yokogawa
Coriolis Flow Meter - Courtesy Yokogawa
Coriolis mass flow meters are widely used throughout the process measurement and control field. Their basic operating principle, combined with modern sensor and signal processing technology, provide a list of positive aspects.

Directly measure mass flow rate based on the principle of measurement.

Measure the mass flow rate with high accuracy of ±0.1%.

Provide a wide usable measurement range.

Deliver density measurement based on oscillating frequency.

Not materially impacted by fluid viscosity or density.

Coriolis flowmeters also do not need straight pipe sections upstream or downstream of the flowmeter. They also have the ability to measure non-conductive fluids. 

I have included an interesting video, produced by Yokogawa, a world class manufacturer of industrial process measurement and control instrumentation. It provides a clear and insightful illustration of the Coriolis principle and how it is used to provide accurate mass flow measurement.

Share your process measurement and control challenges with an instrumentation specialist. Combining your detailed process knowledge and their product application expertise will yield positive solutions.



Miller Energy Expanding Customer Connectivity With New Website Function

Engineering technician inspecting precision part
At Miller Energy, use website chat to connect directly with technicians
and product specialists.
Miller Energy will be rolling out real time chat on their website in early February. This new feature is another in a long line of continuous improvements the company has brought on line to better serve and connect with their customer base. On the desktop version, a chat widget will appear on every website page as a small tab on side of the display. A click of the widget will open a chat window and the visitor can type in their question or comment. Site visitors using mobile devices are afforded the same functionality.

Steve Collins, the Miller Energy website designer at CMS4i, commented on MEI's increased level of connectivity..
"The chat implementation at Miller Energy is notable because it connects customers directly with technically qualified employees that are part of the day to day company operations. Customers will be communicating with real “hands on” engineers and specialists familiar with process measurement and control, and engaged in the field on a daily basis."
Look for the chat function on the Miller Energy website in early February. Use it to get fast answers to your questions from knowledgeable and engaged industry professionals.

Simple Field Verification of Thermal Mass Flow Meter Calibration

Magnetrol brand industrial thermal mass flow transmitter for measuring mass flow of air and gases
Magnetrol TA2 Thermatel
Thermal Mass Flow Transmitter
Courtesy Magnetrol
In processes that require mass flow measurement of gases or air, thermal dispersion measurement technology is often selected for use. Its direct mass flow measurement and other attributes make this technology a favorable alternative for many applications, including combustion air, compressed air, natural gas, aeration air, vent lines, biogas production, vent lines, hydrogen lines, and more.

schematic of dual sensors on thermal mass flow meter
Schematic depiction of dual
temperature sensors on a
thermal mass flow meter
Courtesy Magnetrol
As it name implies, a thermal mass flow meter calculates flow by using temperature measurements. Two temperature sensors are inserted into the flow path. One measures the media temperature, the other is heated by a measured power source. With a device factory calibrated for a specific medium, the amount of heat transferred away from the heated sensor can be known, and will be proportional to the mass flow rate of the medium.

Some of the key attributes of thermal mass flow measurement devices:

  • Comparatively moderate initial cost
  • Compatible with measurement of low density gases that cannot be achieved with some other methods
  • Provides direct mass flow measurement
  • Most devices have option for output of process temperature
  • High turndown, with strong signal at low flow rates
  • Field calibration verification
Verifying the proper operation of transmitters of any type can be challenging, especially if performed in the field. The video below demonstrates how the Magnetrol TA2, a thermal mass flow transmitter, can have a calibration verification performed on site with a simple procedure.

The video is short and concise, with some valuable technical knowledge to build your understanding of how this technology works. More detailed information about mass flow measurement, or the specific devices shown in the video, is available from a product application specialist. Share your process measurement and control challenges with them and collaborate to develop the best solution.



Factors For Selecting a Variable Area Flow Meter (Rotameter)

Industrial process variable area flow meters rotameters
Three of many configurations of
variable area flow meters.
Courtesy Brooks Instrument
Industrial processes have many instances where fluid product components, liquid or gaseous, are moving within pipes. Processing is about control, so it follows that an input to the control, measurement, or data logging centers of the facility will answer the question, "How much is flowing through that pipe?".

There are numerous methods employed for quantifying flow in the industrial process measurement and control field, each with particular attributes that may be considered advantageous under  certain operating conditions. All flow measurement methods are indirect, as their actual measurement is of a property that is impacted in a predictable manner by a change in the flow. Flow measurement is an essential element that, combined with other fluid attributes, is used to calculate the total mass of a fluid that has traversed the measurement point.
One time tested method of measuring flow is the variable area meter, also called a rotameter.
Operation of the variable area meter (also referred to as a VA meter) is based upon creating an equilibrium between an upward force, produced by the fluid motion, and a downward force, gravity. The device includes a tapered glass or metal tube that encases a specially shaped float, often referred to as a shaped weight. VA meters must be installed vertically, with the media flowing from the bottom upward, so that the gravitational force necessary for operation is properly aligned with the flow direction. As fluid flows upward through the specially tapered tube, it creates drag on the float contained within the tube, lifting it upward. As the float rises, the free area between the float and the tube wall increases, causing a reduction in the fluid velocity and drag force. For any given flow volume, the flow velocity within the tube will cause the weight to rise until the drag force created by the flow reaches equilibrium with the countervailing force of gravity on the float. Proper design of the tube and the float allow for direct indication of flow volume.

Some of the attributes of variable area meters include:

  • No external power or fuel required for operation
  • Must be installed vertically, with flow entering bottom
  • Meters are characterized to a specific substance, at a specific temperature
  • Operation is stable, with low pressure drop
  • Requires constant gravity for operation
  • Direct local readout of flow rate with meter or scale imprinted on tube
  • Glass tube based unit flow readings require visibility of float through the medium
  • Accuracy is comparatively low for an industrial flow measurement device
  • Generally low maintenance, simple construction, low comparative cost
Brooks Instrument, a world renowned manufacturer of flow, pressure, and level measurement instruments, has produced a concise and compact white paper that summarizes the factors to consider when specifying a VA meter, as well as how each factor impacts operation of the unit. The description is practical and easily understood. It is recommended reading for all process stakeholders to build their flow measurement knowledge.

I have included the paper below. Browse the paper. Contact the flow instrumentation specialists to discuss your application requirements and challenges. Combining your process know-how with their product application knowledge will produce a good solution.




Digital Sensor Technology: An Uptick in Measurement Performance

Electron microscopy image of Yokogawa DPharp silicon resonant sensor
Silicon Resonant Sensor
Courtesy Yokogawa
Industrial process control, as a field of endeavor, is a continuous quest for better, safer, and higher output. The road of progress is paved with new technologies that deliver higher accuracy and reliability in measurement. A recently commercialized advance is the silicon resonant sensor used to measure pressure in industrial process settings. One manufacturer, Yokogawa, applies this technology throughout their DPharp line of differential pressure transmitters, with numerous industrial applications.

Some of the positive attributes of this latest generation of digital pressure sensor include:


  • Simultaneous measurement of differential and static pressure.
  • Superior digital precision
  • No A/D conversion needed
  • High performance 
  • Temperature effects limited to 10 ppm/deg Celsius, yielding highly stable performance
  • High signal to noise ratio
  • Output level increase of more than four times over previous generation piezoresistance silicon sensor

The features all add up to a substantial improvement over previous technology, delivering an incremental step up in measurement performance and confidence. You can quickly boost your understanding of how the sensor technology works by viewing the short video below. To explore how the Yokogawa DPharp sensor equipped transmitters can provide better performance to your process, contact a product specialist and share your process measurement challenges.