Showing posts with label differential pressure. Show all posts
Showing posts with label differential pressure. Show all posts

Simplified Operation and Reduced Cost With Safety Transmitters and Switches

Series One Safety TransmittersProcess safety experts continually seek sustainable ways to improve the performance of safety critical loops, achieving risk reduction and safety goals in a cost-effective manner. Some view a reduction in complexity of safety related protocols to be a positive development. Traditional or historical approaches to deploying full blown safety systems were generally associated with great expense and high complexity, and still came up short on delivering the needed levels of risk reduction. Process control device and equipment manufacturers have responded with newer technologies and products that better address the safety needs of industrial processing.

In sensor subsystems, United Electric’s certified safety transmitter for pressure or temperature provides a less costly, simple path for process designers, instrument and control engineers, and maintenance personnel. The Series One Safety Transmitters combine several useful safety and monitoring functions into a single, easy to deploy device. Products are available for gauge pressure, differential pressure, and temperature applications. In addition to a 4-20 mA process variable output, the Series One has an embedded programmable high-capacity relay certified as a safety variable output. The Series One Safety Transmitter provides designers the option of a hard wired trip in less than 100 milliseconds, with a tenth of a percent repeatability, along with the monitoring functions of a traditional continuous analog output.

For equipment under control requiring protection, or processes where rapid excursions can initiate dangerous events, this unique pressure and temperature transmitter is addressing process safety time constraints, coupling issues with PLC and DCS units, and adding diversity to the safety instrumented function.

There is a whole lot more to learn about these "Safety right out of the box" industrial pressure and temperature safety transmitters. A product data sheet is provided below, but you can get the latest and most detailed product and application information from a specialist in industrial process measurement and control. Share your safety instrumentation challenges with them, combining your process expertise with their product application knowledge to develop effective solutions.

Learn more about the UEC One Series by visiting this page on the Miller Energy web site.




Primary Flow Elements - Orifice Plate

orifice plate for measuring fluid flow
A simple orifice plate
Courtesy Flow Lin
An orifice plate, at its simplest, is a plate with a machined hole in it. Carefully control the size and shape of the hole, mount the plate in a fluid flow path, measure the difference in fluid pressure between the two sides of the plate, and you have a simple flow measurement setup. The primary flow element is the differential pressure across the orifice. It is the measurement from which flow rate is inferred. The differential pressure is proportional to the square of the flow rate.

An orifice plate is often mounted in a customized holder or flange union that allows removal and inspection of the plate. A holding device also facilitates replacement of a worn orifice plate or insertion of one with a different size orifice to accommodate a change in the process. While the device appears simple, much care is applied to the design and manufacture of orifice plates. The flow data obtained using an orifice plate and differential pressure depend upon well recognized characteristics of the machined opening, plate thickness, and more. With the pressure drop characteristics of the orifice fixed and known, the measuring precision for differential pressure becomes a determining factor in the accuracy of the flow measurement.

There are standards for the dimensional precision of orifice plates that address:

  • Circularity of the bore
  • Flatness
  • Parallelism of the faces
  • Edge sharpness
  • Surface condition
Orifice plates can be effectively "reshaped" by corrosion or by material deposits that may accumulate from the measured fluid. Any distortion of the plate surface or opening has the potential to induce measurable error. This being the case, flow measurement using an orifice plate is best applied with clean fluids.

Certain aspects of the mounting of the orifice plate may also have an impact on its adherence to the calibrated data for the device. Upstream and downstream pipe sections, concentric location of the orifice in the pipe, and location of the pressure measurement taps must be considered.

Properly done, an orifice plate and differential pressure flow measurement setup provides accurate and stable performance. Share your flow measurement challenges of all types with a process measurement specialist, combining your own process knowledge and experience with their product application expertise to develop an effective solution.

Wireless Transmitters In Process Measurement and Control

industrial wireless temperature transmitter
Wireless industrial temperature transmitter
Courtesy Yokogawa
In process control, various devices produce signals which represent flow, temperature, pressure, and other measurable elements of the process. In delivering the process value from the measurement point to the point of decision, also known as the controller, systems have traditionally relied on wires. More recently, industrial wireless networks have evolved, though point-to-point wireless systems are still available and in use. A common operating protocol today is known as WirelessHARTTM, which features the same hallmarks of control and diagnostics featured in wired systems without any accompanying cables. Other wireless standards are employed in industrial settings, as well.

Wireless devices and wired devices can cohabitate the same network. The installation costs of wireless networks are decidedly lower than wired networks due to the reduction in labor and materials for the wireless arrangement. Wireless networks are also more efficient than their wired peers in regards to auxiliary measurements, involving measurement of substances at several points. Adding robustness to wireless, self-organizing networks is easy, because when new wireless components are introduced to a network, they can link to the existing network without needing to be reconfigured manually. Gateways can accommodate a large number of devices, allowing a very elastic range for expansion.

In a coal fired plant, plant operators walk a tightrope in monitoring multiple elements of the process. They calibrate limestone feed rates in conjunction with desulfurization systems, using target values determined experientially. A difficult process environment results from elevated slurry temperature, and the associated pH sensors can only last for a limited time under such conditions. Thanks to the expandability of wireless transmitters, the incremental cost is reduced thanks to the flexibility of installing new measurement loops. In regards to maintenance, the status of wireless devices is consistently transmitted alongside the process variable. Fewer manual checks are needed, and preventative measures may be reduced compared to wired networks.

Time Synchronized Mesh Protocol (TSMP) ensures correct timing for individual transmissions, which lets every transmitter’s radio and processor ‘rest’ between either sending or receiving a transmission. To compensate for the lack of a physical wire, in terms of security, wireless networks are equipped with a combination of authentication, encryption, verification, and key management. The amalgamation of these security practices delivers wireless network security equal to that of a wired system. The multilayered approach, anchored by gateway key-management, presents a defense sequence. Thanks to the advancements in modern field networking technology, interference due to noise from other networks has been minimized to the point of being a rare concern. Even with the rarity, fail-safes are included in WirelessHARTTM.

All security functions are handled by the network autonomously, meaning manual configuration is unnecessary. In addition to process control environments, power plants will typically use two simultaneous wireless networks. Transmitters allow both safety showers and eyewash stations to trigger an alarm at the point of control when activated. Thanks to reduced cost, and their ease of applicability in environments challenging to wired systems, along with their developed performance and security, wireless industrial connectivity will continue to expand.

Share your process measurement and control challenges with knowledgeable professionals, combining your own process knowledge and experience with their product application expertise to develop effective solutions.

Summary of Technologies Used For Continuous Liquid Level Measurement in Industrial Process Control

non-contact radar liquid level transmitter
Non-contact radar liquid level transmitter
Courtesy Magnetrol
Automated liquid processing operations in many fields have requirements for accurate and reliable level measurement. The variety of media and application criteria demand continuous improvement in the technology, while still retaining niches for older style units utilizing methods that, through their years of reliable service, inspire confidence in operators.

Here is a synopsis of the available technologies for instruments providing continuous liquid level measurement. All are generally available in the form of transmitters with 4-20 mA output signals, and most are provided with additional outputs and communications. What is notably not covered here are level switches or level gauges that do not deliver a continuous output signal corresponding to liquid level.

Whether considering a new installation or upgrading an existing one, it can be a good exercise to review several technologies as possible candidates for a project. None of the technologies would likely be considered the best choice for all applications. Evaluating and selecting the best fit for a project can be facilitated by reaching out to a product application specialist, sharing your applications challenges and combining your process knowledge with their product expertise to develop an effective solution.

Displacer – A displacer is essentially a float and a spring that are characterized for a particular liquid and range of surface level movement. The displacer moves in response to liquid level, changing the location of a core connected to the displacer by a stem. The core is within a linear variable differential transformer. The electrical output of the transformer changes as the core moves.

Guided Wave Radar – A radar based technology that uses a waveguide extending into the liquid. The radar signal travels through the waveguide, basically a tube. The liquid surface level creates a dielectric condition that generates a reflection. Calculations and processing of the emitted and returned signals provide a measure of distance to the liquid surface. No moving parts.

Magnetostrictive – A method employing measurement of the transit time of an electric pulse along a wire extending down an enclosed tube oriented vertically in the media. A magnetic float on the exterior of the tube moves with the liquid surface. The float’s magnetic field produces the return signal to the sensor. Processing the time from emission to return provides a measure of distance to the liquid surface.

Pulse Burst Radar - A radar based technology employing emissions in precisely timed bursts. The emission is reflectex from the liquid surface and transit time from emission to return is used to determine distance to media surface.  Not adversely impacted by changes in media conductivity, density, pressure, temperature. No moving parts.

Frequency Modulated Continuous Wave Radar – Another radar based technology that employs a radar signal that sweeps linearly across a range of frequencies. Signal processing determines distance to media surface.  Not adversely impacted by changes in media conductivity, density, pressure, temperature. No moving parts.

RF Capacitance - As media rises and falls in the tank, the amount of capacitance developed between the sensing probe and the ground reference (usually the side metal sidewall) also rises and falls. This change in capacitance is converted into a proportional 4-20 mA output signal. Requires contact between the media and the sensor, as well as a good ground reference. No moving parts.

Ultrasonic Non-Contact – Ultrasonic emission from above the liquid is reflected off the surface. The transit time between emission and return are used to calculate the distance to the liquid surface. No contact with media and no moving parts.

Differential Pressure – Pressure sensor at the bottom of a vessel measures the pressure developed by the height of the liquid in the tank. No moving parts. A variation of this method is often called a bubbler, which essentially measures hydrostatic pressure exerted on  the gas in a tube extending into the contained liquid. It has the advantage of avoiding contact between the measuring instrument parts, with the exception of the dip tube, and the subject liquid.

Laser - Probably one of the latest arrivals on the liquid level measurement scene, laser emission and return detection is used with time interval measuring to accurately determine the distance from the sensor source to the liquid surface.

Load Cell - A load cell or strain gauge can be incorporated into the support structure of the liquid containing vessel. Changes in the liquid level in the vessel are detected as distortions to the structure and converted, using tank geometry and specific gravity of the liquid.

All of these technologies have their own set of attributes which may make them more suitable to a particular range of applications. Consulting with a product specialist will help determine which technologies are the best fit for your application.


Safety Transmitters Achieve Safety Goals With Reduced Cost and Complexity


safety transmitter for temperature, pressure, differential pressure applications in industrial process control
Series One Safety Transmitter
United Electric Controls
Process safety experts continually seek sustainable ways to improve the performance of safety critical loops, achieving risk reduction and safety goals in a cost-effective manner. Some view a reduction in complexity of safety related protocols to be a positive development. Traditional or historical approaches to deploying full blown safety systems were generally associated with great expense and high complexity, and still came up short on delivering the needed levels of risk reduction. Process control device and equipment manufacturers have responded with newer technologies and products that better address the safety needs of industrial processing.

In sensor subsystems, United Electric’s certified safety transmitter for pressure or temperature provides a less costly, simple path for process designers, instrument and control engineers, and maintenance personnel. The Series One Safety Transmitters combine several useful safety and monitoring functions into a single, easy to deploy device. Products are available for gauge pressure, differential pressure, and temperature applications. In addition to a 4-20 mA process variable output, the Series One has an embedded programmable high-capacity relay certified as a safety variable output. The Series One Safety Transmitter provides designers the option of a hard wired trip in less than 100 milliseconds, with a tenth of a percent repeatability, along with the monitoring functions of a traditional continuous analog output.

For equipment under control requiring protection, or processes where rapid excursions can initiate dangerous events, this unique pressure and temperature transmitter is addressing process safety time constraints, coupling issues with PLC and DCS units, and adding diversity to the safety instrumented function.

There is a whole lot more to learn about these "Safety right out of the box" industrial pressure and temperature safety transmitters. A product data sheet is provided below, but you can get the latest and most detailed product and application information from a specialist in industrial process measurement and control. Share your safety instrumentation challenges with them, combining your process expertise with their product application knowledge to develop effective solutions.



Dynamic Compensation for Static Pressure Effects in Differential Pressure Measurement

Differential Pressure Transmitter
Differential Pressure Transmitter
Courtesy Yokogawa Corp.
Attaining the best available performance and accuracy from any measuring device utilized in an industrial process is always advantageous. The scale of most industrial processes is such that even small inaccuracies in process measurement produce financially tangible impact. Differential pressure measurement, with wide application in the industrial process sphere, can be improved with the addition of a means to compensate for the real world effects of static pressure upon instrument performance. Yokogawa Corporation has developed a means to dynamically compensate for static pressure effects in field measurements. The brief technical presentation below will help you understand how static pressure effects can impact your field measurements, as well as how Yokogawa’s Real-time Dynamic Compensation works to offset its impact. More detailed product and application information is available from your Yokogawa specialist.