Showing posts with label industrial control. Show all posts
Showing posts with label industrial control. Show all posts

Crane Duo-Chek® Valves from Miller Energy, Inc.

Crane Duo-Chek® high performance non-slam check valves are available in the sizes, pressure classes and configurations required to meet the most demanding of applications. 

The Crane Duo-Chek® wafer valve design is generally stronger, lighter, smaller, more efficient, and less expensive than conventional swing check valves. Its design meets API 594, width is approximately one fourth the face to face dimension and is 15% to 20% the total weight, on most popular sizes, making them less expensive than a swing check valve. It is much easier to install between standard gaskets and line flanges. The savings compound during installation due to ease in handling and only one set of flange studs is required. Therefore, it is more cost-effective to install, and also to maintain.

For more information about Duo-Chek®  valves, contact Miller Energy, Inc. Call 800-631-5454 or visit  https://millerenergy.com.


Understanding Safety Integrity Level (SIL)

Safety integrity level (SIL)

Safety integrity level (SIL)
Nothing is more important than safety to the process control industries. High temperature and pressure, flammable and toxic materials are just some of the issues faced on a daily basis. Reliability is a key component of safety; the more reliable the device, the safer the critical process.

Safety integrity level (SIL) is defined as "relative level of risk-reduction provided by a safety function, or to specify a target level of risk reduction." SIL ratings are applied in accordance of frequency and the severity of the hazard. These ratings determine the level of performance required to achieve and maintain safety, as well as the probability of failure.

There are four SIL levels; SIL 1, SIL 2, SIL 3, and SIL 4. These SIL levels relate to the risk of failure - a higher the SIL rating poses a higher risk of failure, in turn requiring stricter safety requirements.

Magnetrol, a leading manufacturer of innovative level, flow and volume controls for the process industries has put together this excellent technical note to help you better understand Safety Integrity Level.



Miller Energy, Inc.
https://millerenergy.com
800-631-5454

6 Benefits of Using Wireless Networking Systems in Industrial Applications

Wireless Networking Systems in Industrial ApplicationsWireless technologies offer great value over wired solutions. A reduction in cost is just one of the many benefits of switching to the wireless networking system. There are many benefits, including enhanced management of legacy systems that were previously not possible with a wired networking connection.

Here is an overview of some of the value-added benefits of adopting wireless networking in industrial plants.
  1. Reduced Installation Costs - Savings in installation costs is the key benefit of a wireless networking system. The cost of installing a wireless solution is significantly lower as compared to its wired counterpart. Installing a wireless network requires less planning. Extensive surveys are not required to route the wires to control rooms. This reduced installation cost is the main reason industrial setups should consider going wireless instead of having a wired networking system. 
  2. Improved Information Accuracy - Adopting wireless networking also results in improved accuracy of information. The wireless system is not prone to interferences. As a result, the system ensures consistent and timely transfer of information from one node to another. 
  3. Enhanced Flexibility - Enhanced flexibility is another reason for deploying wireless networking solutions in an industrial setting. Additional points can be awarded easily in an incremental manner. The wireless system can also integrate with legacy systems without any issues. 
  4. Operational Efficiencies - Migrating to wireless networking can help in improving operational efficiencies as well. Plant managers can troubleshoot and diagnose issues more easily. The system facilitates predictive maintenance by allowing the monitoring of remote assets. 
  5. Human Safety - Another critical factor that should influence the decision to migrate to wireless networking is the human safety factor. Wireless technologies allow safer operations, reducing exposure to harmful environments. For instance, a wireless system can be used in taking a reading and adjusting valves without having to go to the problematic area to take measurements. With wireless networking systems, readings can be taken more frequently that can help in early detection and reduction of possible incidents. 
  6. Efficient Information Transfer - Another advantage is that the time required to reach a device is reduced. This results in a more efficient transfer of information between network segments that are geographically separated. The industry wireless networking standards use IP addresses to allow remote access to data from field devices. 

For more information on wireless technologies in industrial settings, contact Miller Energy by visiting https://millerenergy.com or by calling 800-631-5454.

Bulb and Capillary Temperature Switches

general purpose industrial temperature pressure vacuum switch
General purpose temperature switch with bottom connection
for capillary and bulb specific for each application.
Image courtesy United Electric Controls
Not all processes or operations require the use of state of the art technology to get the desired results. Part of good process design is matching up the most appropriate methods and technology to the operation.

One method of changing the state of a switch in response to a process temperature change is a bulb and capillary temperature switch. The switch operation produces a state change in the mechanical switch when the temperature of a process control operation crosses a certain threshold. Bulb and capillary switches have the advantage of operating without electricity, simplifying their application.

The physical operating principle behind the capillary thermostat relies on the use of a fluid. The fluid inside the thermostat expands or contracts in response to the temperature at the sensing bulb. The change in fluid volume produces a force upon a diaphragm or other mechanical transfer device. The diaphragm is connected to, and changes the status of, an adjoining circuit using a snap action switch. For example, a main use of the operating principle in action is when a commercial food company relies on the capillary switch to control temperature related to processing and distribution. Each individual use of a bulb and capillary thermostat is specifically designed based on manufacturer and industry specifications, all of which apply the same physical principle of fluid based physics.

Because of their simplicity and comparatively modest cost, commercial versions of bulb and capillary switches find application throughout residential and commercial settings. Some common applications include warming ovens, deep fat fryers, and water heaters. The HVAC industry uses capillary and bulb switches because the rate of temperature change found in their applications fits the adjoining range offered by the bulb and capillary type switches. Operation of the temperature switches is subject to a few limitations. The switching point is often fixed, so the application must be without a requirement for an adjustable setpoint. The temperature range over which the switches are suitable is comparatively limited, with a matching of the bulb and capillary fluid system to the application temperature range a necessary task in product selection. Within its proper sphere of use, though, bulb and capillary temperature switches offer simple, reliable operation, with little requirement for maintenance.

Bulb and capillary switches are typically used to evaluate average temperature and are especially useful for applications where the temperature is to be maintained at a well-known, consistent value. The bulb portion can be configured to accommodate mounting within the media to be controlled. The devices can be applied effectively to liquid and gaseous media when the proper bulb is used.

Industrial versions of bulb and capillary switches are fitted with appropriate housings for the installation environment. Hazardous location installation can be accommodated, as well as high current ratings and auxiliary functions. There are almost countless variants of bulb and capillary temperature switches available. Don’t overlook these simple mechanical devices as candidates for application in any temperature control process. Share your application requirements and challenges with product specialists for useful recommendations.


Develop a Thoughtful and Comprehensive Alarm Plan for Process Control Operations

Petrochemical piping at industrial processing plant with process control
Petrochemical plants are one of many industrial process
control operations to benefit from comprehensive alarm plans
Industrial process control operators and designers have the capability to measure many aspects of machine operation and process performance. Determining the elements to measure, method of measurement, and how to handle and process the derived information can be challenging, but can also impact the security, performance, and safety of an operation. A plan for monitoring, reporting, and responding to abnormal process conditions, if properly developed and executed, can yield real benefits to a process operator. A protocol that is not well conceived may produce a negative operational impact by creating events that unnecessarily draw resources away from productive endeavor. That protocol, or plan, is often referred to as an alarm plan.

There are numerous forces that can influence the development and implementation of an alarm plan. Each operation must incorporate its own set of external regulatory requirements, internal procedures and policies into a complete alarm protocol. Distilling that macro description down to a workable set of procedures and response tasks is where the real work begins. There is, however, a basic framework that can help organize your thinking and focus on what is most important.

  • What parameters define the process or operation?
    Produce a schedule of every non-human element that is required to make the process function. This will require drilling down through every machine and material that is part of the operation. Expect the schedule to be extensive, even huge. If it is not, consider that your analysis may not be reaching deep enough. The goal here is to create an overview of what makes the process work and provide a tool for systematically studying the process elements and gleaning possible commonalities or relationships among them. Consider disregarding things that cannot be measured, since that prevents the derivation of data for evaluation. Review the completed schedule and decide which parameters shall be measured and evaluated for proper performance.
  • What level of measurement is needed for each monitored parameter?
    An assessment of the needed accuracy, frequency, and resolution for parameter measurement will help define the requirements for instrumentation or other devices used to monitor a particular item. The goal is to make sure the monitoring device is capable of detecting and delivering information of sufficient quality to make decisions.
  • Define the limits of acceptability for each monitored parameter.
    Until the endpoint of the process or operation, each step is likely dependent in some way on previous steps. The output of each step becomes the input of the next. While this, in many cases, may be an oversimplification, it is important to consider the relationships between the tasks and operations that comprise the process. Monitored parameters should relate to the successful completion of a process step, though not necessarily be a direct indicator of success. The maintenance of the parameter within certain bounds may be used as an indicator that a component of successful completion was properly attained. Defining limits of acceptability may involve an element of subjectivity and will likely be customized to accommodate the process. Each organization shall evaluate their operation and determine limits based upon intimate process knowledge and experience.
  • Define abnormal operation for each monitored parameter.
    Abnormal operation may not necessarily be any value not within what is considered acceptable. Consider abnormal to be the range of values that would be cause for notification of the operator, or even automated or human intervention. Note that the definition of unacceptable or abnormal operation might appropriately include filters or defined relationships with other parameters. An example of a simple filter is a time delay. If the measured variable exceeds the specified limit for 2 seconds, it make not be significant. If the threshold is exceeded for 2 minutes, it may be cause to take action. As with the limits of acceptability, developing the definition of abnormal operation for each parameter will be customized for each process.
  • Provide a defined response for every alarm occurrence.
    If it is important to monitor something, then it is likely important to do something when things get out of hand. Human executed alarm response should be concise and uncomplicated, to reduce the probability of error. Automated response should be designed in a manner that provides for functional testing on a regular basis. The scope of the response will be specific for each process, with the level of response depending upon factors determined by the process operators. Response can be as simple as annunciating the condition at a monitoring station, or as dire as shutting down part or all of the process operation.
  • Review every alarm event.
    Each alarm event should be logged and reviewed. Consider whether the event detection and response was adequate and beneficial. If the results were less than expected or desired, assess whether changes can be made to provide improved results in the future. The alarm plan is unlikely to be perfect in its first incarnation. Be prepared to reevaluate and make changes to improve performance.
The exercise of developing a comprehensive alarm plan will help to build understanding of process operation for all involved parties. This article is but a brief synopsis of the subject, intended to get the reader on the path of developing a useful alarm plan. Your alarm plan should an extension of process operation decision making, and have a goal of enhancing safety and reducing loss. Contact the process control and combustion specialists at Miller Energy for additional input.

Defending Industrial Control Systems From Cyber Attack

cybersecurity for industrial control systems
Cybersecurity is now a design element of all industrial
control systems
Industrial control system owners, operators, and other stakeholders should be aware of their exposure to malicious intrusion and attack by individuals or organizations intent on inflicting physical damage, stealing information, or generally wreaking havoc throughout an industrial operation. The risk of intrusion, regardless of the size or type of facility, is real and deserves the focused attention everyone involved in the design and operation of industrial control systems.

The National Cybersecurity and Communications Integration Center, part of the US Department of Homeland Security, ...
serves as a central location where a diverse set of partners involved in cybersecurity and communications protection coordinate and synchronize their efforts. NCCIC's partners include other government agencies, the private sector, and international entities. Working closely with its partners, NCCIC analyzes cybersecurity and communications information, shares timely and actionable information, and coordinates response, mitigation and recovery efforts. (from www.us-cert.gov/nccic)
The NCCIC has published a set of seven basic steps toward establishing a more secure industrial control system. I have included the publication below, and it is interesting and useful reading for all involved in industrial process control.

Having a fence around an industrial site, with a guarded entry gate, no longer provides the level of security needed for any industrial operation. Read the seven steps. Take other actions to build your knowledge and understanding of the risks and vulnerabilities. Cybersecurity is now another layer of design tenets and procedures that must be added to every control system. It will be a part of your company's best practices and success, now and in the future.

There are uncountable legacy controllers and communications devices throughout industrial America. All need to be reassessed for their vulnerability in the current and upcoming security environment. When reviewing your processes and equipment, do not hesitate to contact Miller Energy for assistance in your evaluation of our products.



Industrial Control Systems Present Unique Cybersecurity Challenges

industrial control system cybersecurity
Industrial control systems have unique
cybersecurity challenges.
The International Society of Automation is offering a free white paper entitled “What Executives Need to Know About Industrial Control Systems Cybersecurity”. The article provides useful commentary and information that establishes the scope of cybersecurity in the industrial process control space and provides a basic framework for understanding how every process may be impacted by lax cybersecurity efforts. The author, Joseph Weiss, differentiates Industrial Control System (ICS) cybersecurity from that of organizational IT through a review of various attributes common to both types, including message confidentiality, integrity, time criticality, and more. Any reader’s awareness and understanding of the cybersecurity risks to their operation will be enhanced through this article. I finished reading the article wanting more on the subject, and ISA is certainly a resource for additional content.

A quote from the article...
“Cyber incidents have been defined by the US National Institute of Standards and Technology (NIST) as occurrences that jeopardize the confidentiality, integrity, or availability (CIA) of an information system.”
ICS cybersecurity extends beyond preventing malicious outside intruders from gaining access. It is an important part of maintaining the overall operating integrity of industrial processes. A holistic approach is advocated to identify physical risk factors to the process and its componentry (previous article on device protection), as well as vulnerabilities that may prevent exploitation by unauthorized parties. Weiss goes on to describe the role and qualifications of the ICS Cybersecurity Expert, essentially an individual that can function effectively as an IT cybersecurity tech with the added skills of an industrial control systems expert.

A synopsis of attack events is provided in the article, with the author’s conclusion that not enough is being done to secure industrial control systems and the risk exposure is substantial in terms of potential threats to personnel, environment, and economy. By providing your name and email address, you can obtain the white paper from the ISA website. Your time spent obtaining and reading the article will be well spent.

For any specific information or recommendations regarding our products and cybersecurity, do not hesitate to contact us directly. We welcome any opportunity to help our customers meet their process control challenges.