The Magnetrol Eclipse 700 Guided Wave Radar (GWR) Transmitter


The Magnetrol Eclipse® Model 700 GWR is designed with the chemical processing industry in mind. It gives you the performance and durability you need to address your biggest challenges in a streamlined, versatile configuration cost-effective enough to use in a variety of common applications.

The Eclipse® 700 is a guided wave radar (GWR) transmitter that easily handles challenging situations as well as common chemical processing applications. Its streamlined configuration gives you the features you want and the diagnostics you need, at the price point you expect.

Versatile – Able to be used in a broad range of chemical processing applications

Robust – Stands up to challenging conditions like foaming, interface, and high pressure or harsh conditions

Superior SNR – Strong signal strength is ideal for low dielectric media

Reliable – True Level Measure provides industry-leading accuracy along the entire probe length

Overfill-Safe Operation – Only Eclipse transmitters are available with overfill-capable probes

Proactive Diagnostics – Saves echo curves and offers troubleshooting tips when a problem occurs

For more information, contact Miller Energy, Inc. Call them at 800-631-5454 or visit their website at https://millerenergy.com.

Upcoming Yokogawa "Back to Basics" Process Control Webinar Series

Now is the time to use your time productively!  Yokogawa's "Back to Basics" webinar series provides you a great resource to learn and review different measurement technologies. These online webinars discuss recommended practices, application selection and sizing, and how to avoid common pitfalls. Gain insight directly from the experts!


Yokogawa Back to Basics Series:




"Attaining Proficiency in Industrial Pressure Measurement "

Online Webinar
Thursday, April 9, 2020
11:00 AM Eastern / 8:00 AM Pacific

This webinar reviews the basic principles of measuring pressure and key considerations when selecting pressure transmitters for various applications.

This webinar will discuss:
  • The basic physics of pressure
  • Types of pressure sensors
  • Communication standards
  • Sensor technology considerations
  • Calibration and maintenance best practices



"Fundamentals of Fabulous Flow Measurement"

Online Webinar
Thursday, April 16, 2020
11:00 AM Eastern / 8:00 AM Pacific

This webinar will explore the fundamentals of flow measurement technologies and how they stack up in different applications.

In this webinar you:
  • Review the theory behind flow measurement technologies
  • Discuss common flow application challenges
  • Evaluate the different technologies when selecting a flow meter
  • Illustrate installation practices for successful measurements



"Magical Mystery Tour of High Purity pH Measurement"

Online Webinar
Thursday, April 23rd, 2020
8:00 AM Pacific / 11:00 AM Eastern

The presentation will explore the theory of pH and how it can be successfully applied in high purity applications, discuss both standard and solution temperature compensation, review installation requirements, and illustrate good calibration and maintenance procedures to facilitate satisfactory measurements.

In this webinar we:
  • Review the theory behind the measurement of pH
  • Discuss the issues surrounding high purity pH measurements
  • Illustrate the difference between standard and solution temperature compensation
  • Assess installation requirements for successful measurements
  • Clarify good calibration and maintenance procedures



"Vibrating Element Technology for Gas Density, Specific Gravity, and Hydrogen"

Online Webinar
Thursday, April 30, 2020
8:00 AM Pacific / 11:00 AM Eastern

This presentation goes over the theory behind vibrating element technology and explores some of the applications in which it can be used.

In this webinar you will review:
  • The theory behind density and vibrating element technology
  • The importance of using compensated density
  • How to clean the detector


"Digitally Transform your Plant with Field Wireless and IIOT"

Online Webinar
Thursday, May 7, 2020
11:00 AM Eastern / 8:00 AM Pacific

Wireless sensor networks can provide reliable and secure communications for applications including control, monitoring, safety, and reliability. Regardless of the application, wireless technology has opened the door for companies to pursue improvements that may have been impossible or uneconomical in the past. However, adopting a wireless strategy is more than just throwing a few radios out into the plant. A little planning can go a long way to ensure your future success.

Topics covered include:
  • Where you would use Field Wireless vs IIoT
  • The fundamentals of wireless sensor networks
  • Applications that illustrate how a wireless strategy can transform your operations, improve reliability, and increase safety



White Paper: Using Digital MFC Capabilities to Improve Bioprocessing Results Miller Energy

Biomanufacturing relies on numerous pieces of equipment working in concert to produce life-altering therapeutics. The equipment relies on various subsystems to achieve the desired results. In a bioreactor, one of the most essential subsystems provides gas management for the gases necessary for cellular metabolism. At the heart of the gas management subsystem is the thermal mass flow controller (MFC), a component that precisely measures and controls the delivery of gases to the bioprocess.

This white paper, courtesy of Brooks Instrument, discusses mass flow controller data capabilities in relation to a broader biomanufacturing capital asset management.


For more information on Brooks Instrument products, contact Miller Energy. Call them at 800-631-5454 or visit their website at https://millerenergy.com.

Programming the UE One Series Hybrid Transmitter-Switches


The United Electric Controls One Series electronic pressure and temperature transmitter-switches are designed to provide transmitter, switch and gauge functions all-in-one rugged enclosure that can withstand the rigors of harsh and hazardous environments. Available in Type 4X enclosures approved for intrinsic safety, flameproof and non-incendive area classifications, these hybrid transmitter-switches have a fully adjustable set point and deadband and 0.1% repeatability. This video provides a quick tutorial on how to set up the One Series.

For more information, contact Miller Energy. Call them at 800-631-5454 or visit their web site at https://millerenergy.com.

Happy Holidays from Miller Energy


A time of peace, a season of wonder and joy... We wish you all the best during the holidays and through the coming year, from all of us at Miller Energy.

Don’t Let Valves Come Between You and Accurate Flow Measurement

Getting valves and flow meters to work together is sometimes a challenging task within industrial water and wastewater applications. Valves tend to create the kind of irregular media flow patterns in pipelines that make it a real challenge to achieve accurate flow measurement of liquids, gas or steam. That’s why many types of popular liquid flow meters require straight pipe runs.

Unfortunately, the nature of the process or the kind of space required for long straight runs of pipe is often an impossible luxury in many of today’s plants.



How Valves Create Flow Disturbances


Depending on a pipeline’s flowing media (liquid, gas or steam), the process pressures and the process temperatures, the fluid flow dynamics within a pipeline can vary widely. The ideal pipeline configuration for the accurate measurement of flow with nearly all of the industry’s most popular flow sensors is a straight pipe with consistent media conditions Many processes by their very nature, however, tend to be unstable and create irregular flows within a pipeline all by themselves.

Plant layouts, especially expansions and retrofits, also tend to create less than optimum pipeline conditions for the measurement of flow. The addition of valves, pumps, elbows and other equipment into the pipeline create media swirling and other effects that can result in irregular flow profiles that will reduce flow meter measurement accuracy and repeatability. That’s why many flow meter manufacturers recommend anywhere from 5 to 10 or even 20 to 30 pipe diameters of straight pipe run upstream and downstream of the flow meter—depending on the flow sensing technology in use.

Flow Straightening and Conditioning


While the simple solution is to know your flow meter and its straight pipe run requirements to achieve accurate, consistent measurement, this is often easier said than done. Today’s complex and ever changing industrial processes, the need to treat and conserve water, crowded plant environments where real estate is precious, regulatory requirements and the team involved in running any plant can mean that your valve or elbow inevitably intrudes on your flow meter’s turf. Many times the first sign of the problem is when the flow meter isn’t reading the flow accurately. By then changing the pipeline layout or moving other devices such as valves is impractical and too costly.

Flow straighteners and conditioners offer an answer to this problem. There are several different types of flow straighteners and conditioners, including perforated plates, tube bundles, etc. The purpose of all flow straighteners and conditioners is to eliminate swirl and provide a stable velocity flow profile. Of course the ideal time to think about flow conditioning is before the flow meter is installed so that the flow conditioner and flow meter can be calibrated to work together. One drawback to add-on flow conditioners and straighteners is that they increase head loss.

Flow Meters With Built-In Conditioning


Another solution to consider is the installation of a flow meter with built-in flow conditioning. This type of solution offers the advantages of installation flexibility, reduced equipment, simplified installation with potentially fewer pipe penetrations and reduced maintenance requirements. Several manufacturers offer flow meters that include built-in flow conditioning. For example, McCrometer’s V-Cone Flow Meter is a differential-pressure sensing meter with integral flow conditioning that operates within liquids, gas or steam.

McCrometer’s V-Cone Flow Meter
McCrometer’s V-Cone Flow Meter
The V-Cone’s DP flow sensor conditions fluid flow to provide a stable flow profile that increases accuracy. The flow sensor‘s design features a centrally-located cone inside a tube. The cone interacts with the fluid flow and reshapes the velocity profile to create a lower pressure region immediately downstream. The pressure difference, which is exhibited between the static line pressure and the low pressure created downstream of the cone, can be measured via two pressure sensing taps. One tap is placed slightly upstream of the cone and the other is located in the downstream face of the cone itself. The pressure difference can then be incorporated into a derivation of the Bernoulli equation to determine the fluid flow rate.

The cone’s central position in the line optimizes the velocity of the liquid flow at the point of measurement. It forms very short vortices as the flow passes the cone. These short vortices create a low amplitude, high frequency signal for excellent signal stability. The result is a highly stable flow profile for measurement accuracy to +0.5% with +0.1% repeatability over a wide flow range of 10:1. All of this is possible with a minimal straight pipe run of 0 to 3 diameters upstream and 0 to 1 diameters downstream from the flow meter depending upon placement from valves and other control devices.

Conclusions


Getting accurate flow measurement with valves, pumps, and other equipment in relatively close proximity is difficult, but achievable. The ideal way to achieve accurate and repeatable flow measurement within industrial water and wastewater applications is to recognize in advance the straight pipe run requirements of the flow sensing technology in use at your plant. When the process, the plant layout or other factors lead to swirl in your pipeline that affects meter performance, then consider either flow conditioners or a flow meter with built-in flow conditioning.

Attribution: Original white paper written by Jim Panek, Product Manager, Water & Wastewater, McCrometer, Inc.