Pressure Switches - The Stalwart of Pressure Instrumentation

pressure switch
Pressure switch in an
explosion-proof housing.
(United Electric)
A pressure switch is an electromechanical device that detects the presence of fluid pressure and responds by opening or closing an electrical or pneumatic circuit.

In heavy industry, pressure switches are used in virtually every power plant, refinery, chemical plant, paper mill, steel mill, or other manufacturing plant that blends ingredients.

Pressure switches are simple devices. They can be broken down to their major parts: a pressure port or connection; a sensor that moves in relationship to changing pressures; an electrical or pneumatic switch that opens or closes upon movement; and finally a housing that protect the internals of the pressure switch from the ambient conditions.

pressure switch
Differential pressure switch.
(United Electric)
Pressure switches use a variety of sensing elements such as diaphragms, bellows, bourdon tubes, or pistons. In most cases, the movement of these sensors, caused by pressure fluctuation, is transferred to a set of electrical contacts to open or close a circuit. Normal status of a switch is the resting state. A pressure switch will be in its “normal” status when it senses low or minimum pressure. For a pressure switch, “normal” status is any fluid pressure below the trip threshold of the switch.

One of the earliest and most common designs of pressure switch was the bourdon tube pressure sensor accompanied by a mercury switch. A mercury switch is a position sensitive glass bulb containing mercury that flows over, or away from, the electrical contacts. When pressure is applied, the bourdon tube attempts to straighten, and moves enough to slightly tilt the mercury switch. Many of these kind of pressure switches were sold on steam boilers, and while they became a de facto standard, they were sensitive to vibration and breakage of the mercury bulb.

electrical switch contacts
NO vs. NC electrical switch contacts.
The most common electrical switch used in pressure switches are "microswitch" type. These are also called "snap switches" because they are actuated by very little physical force, through the use of a tipping-point mechanism. These type of switches offer reliability and repeatability. They also are available in many different voltages and current ratings

One of the criteria of any pressure switch is the deadband or (reset pressure differential). This setting determines the amount of pressure change required to reset the switch to its normal state after it has tripped.  The “differential” pressure of a pressure switch should not to be confused with differential pressure switch, which actually measures the difference in pressure between two separate pressure ports.

When selecting pressure switches you must consider the electrical requirements (volts, amps, AC or DC), the area classification (hazardous, non-hazardous, general purpose, water-tight), pressure sensing range, body materials that will be exposed to ambient contaminants, and wetted materials (parts that are exposed to the process media).

It's always a good idea to discuss your application with an expert before specifying or installing a pressure switch. You'll end up saving time and money, and ensure long, safe operation.

For more information on pressure switches, contact Miller Energy by visiting https://millerenergy.com or by calling one of these numbers: In New Jersey 908-755-6700. In Pennsylvania 610-363-6200.

Miller Energy - Industrial Instrumentation & Process Control Equipment

Miller Energy is a Manufacturer's Representative and Distributor of Industrial Instrumentation and Process Control Equipment. Since 1958, we have been committed to exceeding our customers expectations by providing an unparalleled level of customer service and local technical support. We offer the most comprehensive line of measurement, control, and communication solutions in the Industry today. The products we represent solve challenging applications in the Industrial Gas, Power, Refining, Chemical / Petro-Chemical, Food & Beverage, Water/Wastewater, and Pharmaceutical markets.

NJ 908-755-6700 
PA 610-363-6200

Bimetal Thermometers for Industrial Process Measurement

stainless steel bimetal thermometer
Bimetal thermometers have a place in modern process
measurement systems.
Image courtesy Wika
Temperature measurement is everywhere, with broad ranges of accuracy, range and other operational requirements to bring the measurement data into a process management or control system. The process could be as simple as measuring a cooking temperature, or a part of a complex refining operation. Temperature provides an indication of heat energy level that is used in many ways throughout process control.

Though there are many instruments and technologies available to measure temperature, one that everyone is familiar with is the dial thermometer. A familiar numeric scale and a pointer indicate the temperature at the sensing location. Even within the product range of dial thermometers, there are several differing methods utilized to produce a temperature reading. One of these is the bimetal thermometer.

A bimetallic thermometer is named for the mechanism that responds to process temperature and provides the force to position the indicator needle over the scale on the dial face. A bimetal is formed from two dissimilar metals bonded together. The metals expand and contract at different rates in response to a change in their temperature. A bimetal thermometer relies on the predictable deformation of a bimetal spring or strip in response to a temperature change. The mechanical deformation is transformed into rotational movement of the indicating needle on the instrument face where the corresponding temperature can be read by a technician or operator. This design principle has been in use throughout laboratories, kitchens, and industry for many years and has proven to be predictably accurate, stable, and rugged.

The major advantages of the bimetallic thermometer are its relative cost, ease of use, and ability to function without any external power source. This class of instruments provides operability up to +1000°F.

When applying dial faced thermometers, there are several main considerations.

  • Scale - The display behind the indicating pointer. The scale divisions impact the instrument's accuracy at indicating process temperature.  
  • Range - The physical suitability of the instrument to be exposed to the temperatures which may be present in the process. May be the same as scale.
  • Dial Size - Larger diameter dial faces make reading the instrument indications easier.
  • Connection - There are numerous options for the way in which the probe or stem, which is inserted into the process, attaches to the dial portion or head of the instrument. Common arrangements are back, side, or bottom connected. If the head cannot be rotated or angled, the connection attributes may be the sole determinant of how the dial face is oriented.
  • Stem Length - The stem extends from the head into the process. Coordinating the stem length with the insertion depth into the process and the placement of the instrument is important to achieving a useful and ergonomic installation.
  • Materials of Construction - Make sure the selected instrument is rugged enough to withstand expected environmental conditions at the installation site.
These are only the primary considerations. Share your operational requirements with a product specialist. Leverage your own knowledge and experience with their product application expertise to develop the optimal solution.

Guided Wave Radar - An Option for Level Measurement in Hygienic Applications

GUIDED WAVE RADAR LEVEL TRANSMITTER FOR HYGIENIC APPLICATIONS
A special version of the Magnetrol Eclipse 705
is configured for hygienic applications.
Image courtesy Magnetrol
Measurements of a variety of process conditions are utilized to monitor and control operations and output. One general goal of measurement, other than answering the question "how much", is to avoid or minimize any interference with the process itself. A second goal is to not be fooled by the process into returning a false measurement result.

Guided wave radar is based upon the principle of TDR (time domain reflectometry). Pulses of electromagnetic energy travel from the emitting antenna via a fixed waveguide or probe immersed in the target medium. When it contacts the media surface, the pulse energy is reflected back along the probe to a receiving antenna. The instrument actually measures the time elapsed between the pulse transmission and the detection of the reflected return. The time measurement is used to calculate the distance from the antenna to the media surface. The distance calculation, with knowledge of the vessel, can be converted into a value indicating media level or volume. Of course, this is a simplified account of the operating principal.

Guided wave radar (GWR), as opposed to an open style radar level measurement method, uses a probe immersed in the process media to guide high-frequency electromagnetic waves into the media being measured. While it does involve contact by the sensing instrument with the media, GWR eliminates interference from fixtures or structures that may exist within the tank or vessel. The immersion probe waveguide also attenuates the impact of media turbulence and other potential disturbances. The waveguide reduces the potential impact of elements that may adversely impact the measurement accuracy, resulting in greater accuracy and reliability of the measurements.

For hygienic applications, the transmitters are available with 304 stainless steel housings designed specifically for use in facilities with the special requirements for the wetted and non-wetted materials, process connections and surface finishes of hygienic industries. In addition to high accuracy, the GWR instrument output is not impacted by media buildup on the sensing probe.

Share your level measurement challenges with process instrumentation specialists. Leverage your own process knowledge and experience with their product application expertise to develop an effective solution.


Register Early for the Yokogawa Users Conference 2018

Yokogawa Users Conference North America
The Yokogawa Users Conference for North America will be held
on September 10 - 13 in Orlando, FL
Yokogawa is hosting its Users Conference in Orlando FL for 2018. This excellent event enables attendees to:

  • Learn how to maximize the value of their measurement and control investment.
  • View and learn about the latest products and solutions for process measurement and control.
  • Interact with subject experts and Yokogawa partners.
  • Network with industry peers.
  • Build knowledge of best practices for particular industries and measurement and control in general.
There will be panel discussions, technical sessions, exhibits and more. The event is scheduled for September 10th through 13th, and early registration has started. Make plans to attend and build your knowledge base. You can find the registration information at the conference website, or reach out to a Yokogawa representative to find out more.

Magnetic Flow Meters

magnetic flowmeter flow meter on large flanged lined pipe section
Magnetic flow meters can be easily applied in lined
pipe sections and those of substantial diameter.
Image courtesy Yokogawa
The measurement of fluid flow is a common process control function. Flow measurement can have a range of differing output requirements, depending upon the needs of the process operators. With many technologies and instruments from which to choose, knowledge of the principals behind each measurement technology and basic operation requirements can help in the selection of the best instrument for each application. 

Anywhere there are pipes, somebody wants to know how much fluid is passing through them. Industrial flow meters rely on their ability to measure the change in some physical characteristic of fluid moving within a pipe that can be related to fluid velocity or mass flow. Depending upon the nature of the raw measurement, additional information and processing may be necessary to convert the base measurement into a useful measurement of flow rate.

In the processing industries, differing technologies are used to measure fluid motion. Some common technologies include magnetic, ultrasonic, vortex shedding, Coriolis and differential pressure. This list is not exhaustive, and several other technologies will certainly be found in use. Each methodology survives within a competitive marketplace due to its unique combination of performance and value attributes. Let's look at magnetic flow meters, also referred to as magmeters.

The operational principle of a magnetic flow meter is based upon Faraday’s Law. This fundamental scientific principle states that a voltage will be induced across a conductor moving at a right angle through a magnetic field, with the voltage being proportional to the velocity of the conductor. The principle allows for an inherently hard-to-measure aspect of a conductive fluid to be expressed via the magmeter. In a magmeter application, the instrument produces the magnetic field referred to in Faraday’s Law. The conductor, moving at a right angle to the magnetic field, is the fluid. The actual measurement of a magnetic flow meter is the induced voltage corresponding to fluid velocity. This can be used to determine volumetric flow and mass flow when combined with values of other fluid properties and the pipe cross sectional area. Magnetic flow meters enjoy some positive application attributes.
  • Magnetic flow meters have no moving parts.
  • The instrument, which often resembles a pipe section, can be lined with corrosion resistant material for use with aggressive media.
  • With no sensor insertions or obstructions in the fluid path, the impact of the instrument on the flow is minimal.
  • Accuracy, when compared to other technologies, is high.
  • Application to laminar, turbulent, and transitional flow profiles is permissible.
  • Generally, measurement is not adversely impacted by fluid viscosity, specific gravity, temperature and pressure.
  • Magnetic flow meter technology can be applied to a very wide range of pipe sizes.
  • Device responds rapidly to changes in fluid flow.
  • Can be successfully applied to liquids containing heavy particulates.
  • Generally long service life with little maintenance.
Though the roster of positive attributes is strong, magmeters are not universally applied. Consider some of these points with respect to your potential application.
  • The fluid acts as the "conductor", as stated in Faraday's Law. Magnetic flow meters only work on liquids with conductivity above a certain threshold. They may be unsuitable for use with hydrocarbons and high purity water for this reason.
  • Cannot be used to measure gas flow because gases are not sufficiently conductive.
  • Piping must be grounded.
  • Generally, rated accuracy requires the pipe cross section to be filled by the liquid being measured.
This listing of attributes is very general in nature. Some magnetic flow meter variants have adaptations that minimize or accommodate the impact of special process conditions. Share your flow measurement requirements and challenges with a process measurement specialist. Your own knowledge and experience will be leveraged into an effective solution by their product application expertise.

Mass Flow Controllers for Precise Dosing

mass flow controller cutaway view
Mass Flow Controller - Cutaway View
Image courtesy Brooks Instrument 
There are processing applications that require very accurate flow or dosing control of added constituents. The applications are diverse, ranging from controlled gas flow to precise metering of product fluid components. The ability to accurately and reliably measure and regulate mass flow of a fluid into a process is a common task in process measurement and control.

Thermal mass flow measurement, in basic operation, infers mass flow by measuring the heat dissipation from a heated temperature sensor and comparing it to an unheated reference temperature sensor. The heat dissipation is directly proportional to the mass flow of gas or liquid.

Thermal mass flow meters are very popular for several reasons. They have no moving parts, have a fairly unobstructed flow path, are accurate over a wide range of flow rates, calculate mass flow rather than volume, measure flow in large or small piping systems, and do not need temperature or pressure compensation.

For a process control application, accuracy and real time delivery of measurement data are key factors. Advanced smart controls with a range of communications options that will interface with a variety of devices across a choice of platforms bring high levels of functionality and ease of use to an application. For gas applications, smart technology allows one device to be applied to multiple gas types and ranges without removing the flow meter from the system. Product selection is enhanced by the availability of instruments targeted at a range of applications.

Share your flow measurement and control challenges with process measurement and control specialists. Leverage your own process knowledge and experience with their product application expertise to develop effective solutions.