Magnetic Flow Meters

magnetic flowmeter flow meter on large flanged lined pipe section
Magnetic flow meters can be easily applied in lined
pipe sections and those of substantial diameter.
Image courtesy Yokogawa
The measurement of fluid flow is a common process control function. Flow measurement can have a range of differing output requirements, depending upon the needs of the process operators. With many technologies and instruments from which to choose, knowledge of the principals behind each measurement technology and basic operation requirements can help in the selection of the best instrument for each application. 

Anywhere there are pipes, somebody wants to know how much fluid is passing through them. Industrial flow meters rely on their ability to measure the change in some physical characteristic of fluid moving within a pipe that can be related to fluid velocity or mass flow. Depending upon the nature of the raw measurement, additional information and processing may be necessary to convert the base measurement into a useful measurement of flow rate.

In the processing industries, differing technologies are used to measure fluid motion. Some common technologies include magnetic, ultrasonic, vortex shedding, Coriolis and differential pressure. This list is not exhaustive, and several other technologies will certainly be found in use. Each methodology survives within a competitive marketplace due to its unique combination of performance and value attributes. Let's look at magnetic flow meters, also referred to as magmeters.

The operational principle of a magnetic flow meter is based upon Faraday’s Law. This fundamental scientific principle states that a voltage will be induced across a conductor moving at a right angle through a magnetic field, with the voltage being proportional to the velocity of the conductor. The principle allows for an inherently hard-to-measure aspect of a conductive fluid to be expressed via the magmeter. In a magmeter application, the instrument produces the magnetic field referred to in Faraday’s Law. The conductor, moving at a right angle to the magnetic field, is the fluid. The actual measurement of a magnetic flow meter is the induced voltage corresponding to fluid velocity. This can be used to determine volumetric flow and mass flow when combined with values of other fluid properties and the pipe cross sectional area. Magnetic flow meters enjoy some positive application attributes.
  • Magnetic flow meters have no moving parts.
  • The instrument, which often resembles a pipe section, can be lined with corrosion resistant material for use with aggressive media.
  • With no sensor insertions or obstructions in the fluid path, the impact of the instrument on the flow is minimal.
  • Accuracy, when compared to other technologies, is high.
  • Application to laminar, turbulent, and transitional flow profiles is permissible.
  • Generally, measurement is not adversely impacted by fluid viscosity, specific gravity, temperature and pressure.
  • Magnetic flow meter technology can be applied to a very wide range of pipe sizes.
  • Device responds rapidly to changes in fluid flow.
  • Can be successfully applied to liquids containing heavy particulates.
  • Generally long service life with little maintenance.
Though the roster of positive attributes is strong, magmeters are not universally applied. Consider some of these points with respect to your potential application.
  • The fluid acts as the "conductor", as stated in Faraday's Law. Magnetic flow meters only work on liquids with conductivity above a certain threshold. They may be unsuitable for use with hydrocarbons and high purity water for this reason.
  • Cannot be used to measure gas flow because gases are not sufficiently conductive.
  • Piping must be grounded.
  • Generally, rated accuracy requires the pipe cross section to be filled by the liquid being measured.
This listing of attributes is very general in nature. Some magnetic flow meter variants have adaptations that minimize or accommodate the impact of special process conditions. Share your flow measurement requirements and challenges with a process measurement specialist. Your own knowledge and experience will be leveraged into an effective solution by their product application expertise.

Mass Flow Controllers for Precise Dosing

mass flow controller cutaway view
Mass Flow Controller - Cutaway View
Image courtesy Brooks Instrument 
There are processing applications that require very accurate flow or dosing control of added constituents. The applications are diverse, ranging from controlled gas flow to precise metering of product fluid components. The ability to accurately and reliably measure and regulate mass flow of a fluid into a process is a common task in process measurement and control.

Thermal mass flow measurement, in basic operation, infers mass flow by measuring the heat dissipation from a heated temperature sensor and comparing it to an unheated reference temperature sensor. The heat dissipation is directly proportional to the mass flow of gas or liquid.

Thermal mass flow meters are very popular for several reasons. They have no moving parts, have a fairly unobstructed flow path, are accurate over a wide range of flow rates, calculate mass flow rather than volume, measure flow in large or small piping systems, and do not need temperature or pressure compensation.

For a process control application, accuracy and real time delivery of measurement data are key factors. Advanced smart controls with a range of communications options that will interface with a variety of devices across a choice of platforms bring high levels of functionality and ease of use to an application. For gas applications, smart technology allows one device to be applied to multiple gas types and ranges without removing the flow meter from the system. Product selection is enhanced by the availability of instruments targeted at a range of applications.

Share your flow measurement and control challenges with process measurement and control specialists. Leverage your own process knowledge and experience with their product application expertise to develop effective solutions.

Innovative Non-Contact Radar Liquid Level Transmitter

non-contact radar level transmitter for industrail process control
Pulsar R86 non-contact radar level transmitter.
Image courtesy Magnetrol
Level measurement of liquids and solids in containers, silos, tanks and other vessels is an essential part of many processing operations. Accurate and reliable measurement of solids or liquid level contributes to operational success, as well as enhancing safety, both of which contribute to the bottom line and successful operation.

Magnetrol, globally recognized innovator in flow and level measurement, incorporates years of experience into their latest version of non-contact radar level measuring instruments. The incremental improvements contribute to easier, more flexible installation and better performance.

The R86 is a 26 GHz level transmitter applicable across a wide range of requirements in many industries. Benefits of the 26 GHz radar signal, with its smaller wavelength, are a smaller antenna and improved 1mm resolution. The narrower beam from the antenna makes positioning the transmitter less restrictive, with easier accommodation for vessel fixtures or geometry. Advanced on board diagnostics supplement the improved performance and deliver the information needed to maintain proper operation and process visualization. A broad range of antennas and mountings are available for the R86, accommodating various tank sizes, fittings, and temperatures

More information on the Pulsar R86 is provided in the brochure included below. Share your level measurement challenges and requirements with a process measurement specialist. Employ the leverage of their product application expertise to your own process knowledge and experience to develop an effective solution.


Composite Solenoid Valves for Water Purification Systems

composite solenoid valve for water purification system use
Composite construction, along with other targeted features,
make the ASCO 212 Series a good choice for membrane water
purification systems and equipment.
Image courtesy Emerson - ASCO
Water purification systems and equipment present a unique set of fluid control challenges. Purified water is aggressive and will rapidly corrode most metallic parts. Additionally, strong chemicals are utilized in some systems for cleaning or regeneration, presenting yet another longevity challenge for the process valves needed to operate a system or equipment skid.

ASCO, an Emerson Brand, has developed a line of solenoid operated valves targeted at membrane based water purification applications. These applications include desalination skids and a broad range of ultrafiltration, and reverse osmosis equipment installations.

The Series 212 delivers substantial benefit to customers, through its basic construction, design and ease of use.

  • Compliance and certification listings with applicable current standards and codes.
  • Short lead time with quick-ship program from distributors.
  • High reliability - tested up to one million cycles.
  • Ease of connectivity, available as Turn & Lock, NPT thread, or solvent bond.
  • FasN connection system enables greatest equipment design and assembly flexibility.
  • Normally open and normally closed versions available.
More detail is provided in the datasheet included below. Share your fluid control challenges with process control specialists at Miller Energy, leveraging your own knowledge and experience with our product application expertise to develop effective solutions.



Miller Energy Exhibiting at ISPE Delaware Chapter Symposium and Exhibition

Miller Energy, Inc. is exhibiting at the ISPE Delaware Valley Chapter
28th Annual Symposium & Exhibition, Booth #2034
For the 28th year, the ISPE Delaware Valley Chapter is hosting a symposium and exhibition supporting pharmaceutical industry research, production and operations. The event is held at Lincoln Financial Field, in Philadelphia, and draws broad participation from industry participants of all types. Miller Energy, a process measurement and control solutions provider, is exhibiting at booth #2034 in the exhibition area. The company is located in the Philadelphia area and has been serving the industry for many years, meeting application challenges for fluid measurement and control, as well as other related operations. 

Learn more about Miller Energy with a visit to their website, but more importantly, stop by their booth and introduce yourself when you go to the exhibition. Share your process measurement and control challenges with the seasoned professionals at Miller Energy. Leverage your own knowledge and experience with their product application expertise.

Process Gas Chromatographs and Flare Monitoring

gas flare at petroleum oil refinery
Flare monitoring requires specialized instruments to
meet regulatory requirements.
Gas chromatography is a common analysis tool employed in many areas of industry, including oil and gas, pharmaceutical, chemical, and others. Yokogawa Corporation of America  has been delivering top tier industrial GC performance with their GC8000 Process Gas Chromatograph for use in oil and gas, and other industrial applications.

Modern regulatory requirements for flare gas management highlight an application area for gas chromatography. Yokogawa provides an analysis of the requirements for flare monitoring, related regulatory compliance, and how various measurement and analysis techniques and equipment can aid in delivering a successful compliance plan. Industrial gas chromatographs can play a part in a compliance plan for flare monitoring.

In addition to the ruggedness and reliability for which Yokogawa gas chromatographs are well known, the GC8000 brings a number of innovations and improvements to the company’s process gas chromatography product offering that deliver easier operation and more efficient utilization.
  • Color touchscreen HMI for easy operation
  • Advanced predictive diagnostics and software functions monitor key performance indicators during each analysis to verify analyzer is operating within proper tolerances.
  • Parallel chromatography is made practical through the use of the GC Modules provided as part of the GC8000. Virtual GCs can be set up inside a single GC with GC Modules to measure multiple streams simultaneously.
More detail is available on the GC8000 Process Gas Chromatograph, the culmination of Yokogawa’s 55 years of experience in the field. For more information, or to discuss your application specifics, contact a product specialist.

Industrial Fluid Flow Measurement

Coriolis flow meter
Coriolis flow meters deliver a mass flow measurement
Image courtesy Yokogawa
Fluid flow measurement is commonly employed in many industrial process control operations. Accurate and useful flow measurement can be obtained with the proper application and installation of a flow meter as part of the fluid transfer system.

Industrial flow meters employ differing technologies to directly or indirectly measure gas and liquid flow rates. The selection of an appropriate measurement technology and instrument will be influenced by a number of factors related to the installation and application demands.

Among the many available technologies for fluid flow measurement, vortex flow meters, magnetic flow meters, Coriolis flow meters, and rotameters are among some of the most common found in industry.

Each of the separate technologies have attributes which can make them more suitable to certain applications. Selecting the most appropriate flow measurement technology for an application is one of the initial and crucial steps to designing a well functioning flow measurement system.
Selection criteria, such as fluid temperature, pressure, and velocity will be part of the selection process. Additional considerations include whether the fluid may be abrasive, corrosive, clean or dirty. The state of the fluid, liquid or gas, must also be considered. The desired output, whether volumetric or mass flow, will certainly be an integral part of the criteria.

Selecting the right measurement technology and instrument is not always an easy task, especially since it may be something that you do infrequently. Share your flow measurement challenges and requirements with process instrumentation specialists, leveraging your own knowledge and experience with their product application expertise to save time and develop an effective solution.