Defending Industrial Control Systems From Cyber Attack

cybersecurity for industrial control systems
Cybersecurity is now a design element of all industrial
control systems
Industrial control system owners, operators, and other stakeholders should be aware of their exposure to malicious intrusion and attack by individuals or organizations intent on inflicting physical damage, stealing information, or generally wreaking havoc throughout an industrial operation. The risk of intrusion, regardless of the size or type of facility, is real and deserves the focused attention everyone involved in the design and operation of industrial control systems.

The National Cybersecurity and Communications Integration Center, part of the US Department of Homeland Security, ...
serves as a central location where a diverse set of partners involved in cybersecurity and communications protection coordinate and synchronize their efforts. NCCIC's partners include other government agencies, the private sector, and international entities. Working closely with its partners, NCCIC analyzes cybersecurity and communications information, shares timely and actionable information, and coordinates response, mitigation and recovery efforts. (from www.us-cert.gov/nccic)
The NCCIC has published a set of seven basic steps toward establishing a more secure industrial control system. I have included the publication below, and it is interesting and useful reading for all involved in industrial process control.

Having a fence around an industrial site, with a guarded entry gate, no longer provides the level of security needed for any industrial operation. Read the seven steps. Take other actions to build your knowledge and understanding of the risks and vulnerabilities. Cybersecurity is now another layer of design tenets and procedures that must be added to every control system. It will be a part of your company's best practices and success, now and in the future.

There are uncountable legacy controllers and communications devices throughout industrial America. All need to be reassessed for their vulnerability in the current and upcoming security environment. When reviewing your processes and equipment, do not hesitate to contact Miller Energy for assistance in your evaluation of our products.



LOGIIC - Cybersecurity Confederation for Industry Video

oil refinery with tanker ship
Oil Refinery
In response to the challenges presented by malicious or mischievous cyber operatives, a number of organizations joined together to collaborate in the design, testing, and implementation of tools and techniques to protect critical industrial systems on a global scale. LOGIIC (Linking Oil and Gas Industry to Improve Cybersecurity), as its name implies, focuses on the oil and gas industry. We should all know, however, that a substantial portion of the automation and process control devices we regularly utilize throughout many industries today were originally developed in the oil and gas industry, where the operational scale and risk level are sufficiently high to justify the costs of developing new technology, methods, and equipment.

LOGIIC participants include the Automation Federation, which brings the resources of world class device and software manufacturers to bear on cybersecurity issues of the day. The Cyber Security Division of the Science & Technology Directorate in the US Department of Homeland Security is also involved. Currently, five major oil companies are members.

Since its inception, LOGIIC has successfully completed eight major projects, with plans for many more. Upon completion of selected projects, LOGIIC delivers public reports to help elevate best practices across the entire industry. Both the member companies and the government are putting funds towards these projects which benefits not only the private sector, but also the public interest. Companies are applying the results within their organizations, because it helps bridge the gap between information technology and the industrial-environment sides of the organization.

LOGIIC is an organization that conducts activities and disseminates information that can be useful throughout your own organization and that of your customers and suppliers in the industrial process control field. Below is a video highlighting the organization and its work.

Video Reenactment and Analysis of Explosion at Chemical Storage Facility

Abstract image of explosion
Unfortunate events can provide useful lessons for industrial
process operators
Industrial accidents range in severity and impact from minuscule to catastrophic. As operators, owners, or technicians involved with industrial operations, we all have a degree of moral, ethical, and legal responsibility to conduct our work in a manner that does not unduly endanger personnel, property, or the environment. Maintaining a diligent safety stance can be helped by reviewing industrial accidents at other facilities. There is much to learn from these unfortunate events, even when they happen in an industry that may seem somewhat removed from your own.

The U.S. Chemical Safety Board, or CSB, is an independent federal agency that investigates industrial chemical accidents. Below, find one of their video reenactments of an explosion that occurred in Texas in 2013, along with their findings regarding the cause of the incident. Check out the video and sharpen your senses to evaluate potential trouble spots in your own operation.

Contact Miller Energy for any safety related information you may need concerning their lines of industrial process control products.



New Product - Model R96 Non-Contact Radar Level Transmitter

Non Contact radar level transmitter Magnetrol
New Model R96 Non-Contact Radar
Level Transmitter
Courtesy Magnetrol International
Magnetrol is a well known manufacturer of level and flow measurement instrumentation for the industrial process control field. The company recently released the Model R96 Non-Contact Radar Level Transmitter for applications where continuous fluid level measurement is required.

The company's description of the product...
"Virtually unaffected by the presence of vapors or air movement within a vessel’s free space, the two-wire, loop-powered, 6 GHz Radar transmitter measures a wide variety of liquid media in process conditions ranging from calm product surfaces and water-based media to turbulent surfaces and aggressive hydrocarbon media."
 The new product offers features that combine to make a state-of-art instrument for accurate continuous level measurement. A product brochure is included below. Contact application specialists to formulate the right product configuration for your level measurement challenge.




Preparation of Control Valves For Oxygen or High Purity Service

Specialty industrial control valves
Many valves can be specially prepared for high purity or oxygen service
Oxygen is used extensively throughout a wide range of industrial processes. Medical, deep-sea, metal cutting, welding, and metal hardening are a few examples. The steel industry uses oxygen to increase capacity and efficiency in furnaces. As a synthesis gas, oxygen is also used in the production of gasoline, methanol and ammonia.

Odorless and colorless, oxygen is concentrated in atmospheric air at approximately 21%. While O2, by itself, is non-flammable, it vigorously supports combustion of other materials. Allowing oils or greases to contact high concentrations of oxygen can result in ignition and possibly explosion. Oxygen service preparation of an industrial valve calls for special cleaning processes or steps that remove all traces of oils and other contaminants from the valve to prepare for safe use with oxygen (O2). Aside from the reactive concerns surrounding oxygen, O2 preparation is also used for applications where high purity must be maintained and valves must be free of contaminants.

Gaseous oxygen is noncorrosive and may be used with a variety of metals. Stainless steel, bronze and brass are common. Liquid oxygen presents unique challenges due to cryogenic temperatures. In this case, valve bodies, stems, seals and packing must be carefully chosen.

Various types of valves are available for oxygen service, along with a wide array of connections, including screwed, socket weld, ANSI Class 150 and ANSI Class 300, DIN PN16 and DIN PN40 flanged ends. Body materials include 316 stainless steel, monel, bronze and brass. Ball and stem material is often 316 stainless steel or brass. PTFE or glass filled PTFE are inert in oxygen, serving as a common seat and seal material employed for O2 service.

Common procedures for O2 service are to carefully deburr metal parts, then meticulously clean to remove all traces of oil, grease and hydrocarbons before assembly. Valve assembly is performed in a clean area using special gloves to assure no grease or dust contaminates the valve. Lubricants compatible with oxygen must be used. Seating and leakage pressure tests are conducted in the clean area, using grease free nitrogen. Specially cleaned tools are used throughout the process. Once assembled, the valves are tested and left in the open position. A silicone desiccant pack is usually inserted in the open valve port, then the valve ports are capped. A warning label about the desiccant pack's location is included, with a second tag indicating the valve has been specially prepared for oxygen service. Finally, valves are individually sealed in polyethylene bags for shipment and storage. Different manufacturers may follow slightly differing protocols, but the basics are the same. The valve must be delivered scrupulously contaminant free.

The O2 preparation of valves is one of many special production variants available to accommodate your special application requirements. Share your valve requirements and challenges with a valve specialist to get the best solution recommendations.

Process Automation: Valve Actuator Limit Switches

municipal water treatment plant
Municipal water treatment plant
Limit switches are devices which respond to the occurrence of a process condition by changing their contact state. In the industrial control field, their applications and product variations are almost countless. Essentially, the purpose of a limit switch is to serve as a trigger, indicating that some design condition has been achieved. The device provides only an indication of the transition from one condition to another, with no additional information. For example, a limit switch triggered by the opening of a window can only deliver an indication that the window is open, not the degree to which it is open. Most often, the device will have an actuator that is positively activated only by the design condition and mechanically linked to a set of electrical contacts. It is uncommon, but not unknown, for limit switches to be electronic. Some are magnetically actuated, though most are electromechanical. This article will focus on limit switch designs and variants used in the control and actuation of industrial process valves.
Employed in a wide range of industrial applications and operating conditions, limit switches are known for their ease of installation, simple design, ruggedness, and reliability.
Valves, devices used for controlling flow, are motion based. The movable portions of valve trim create some degree of obstruction to media flow, providing regulation of the passage of the media through the valve. It is the movement of critical valve trim elements that limit switches are used to indicate or control. The movable valve trim elements commonly connect to a shaft or other linkage extending to the exterior of the valve body. Mounting electric, hydraulic, or pneumatic actuators to the shaft or linkage provides the operator a means to drive the mechanical connection, changing the orientation or position of the valve trim and regulating the media flow. Because of its positive connection to the valve trim, the position of the shaft or linkage is analogous to the trim position and can be used to indicate what is commonly referred to as “valve position”. Limit switches are easily applied to the valve shaft or linkage in a manner that can provide information or direct functional response to certain changes in valve position.
In industrial valve terms, a limit switch is a device containing one or more magnetic or electrical switches, operated by the rotational or linear movement of the valve.
What are basic informational elements that can be relayed to the control system by limit switches? Operators of an industrial process, for reasons of efficiency, safety, or coordination with other process steps, may need answers to the following basic questions about a process control valve:
  • Is the valve open?
  • Is the valve closed?
  • Is the valve opening position greater than “X”?
  • Has the valve actuator properly positioned the valve at or beyond a certain position?
  • Has the valve actuator driven the valve mechanism beyond its normal travel limits?
  • Is the actuator functioning or failing?
Partial or complete answers to these and other questions, in the form of electrical signals relayed by the limit switch, can serve as confirmation that a control system command has been executed. Such a confirmation signal can be used to trigger the start of the next action in a sequence of process steps or any of countless other useful monitoring and control operations.

Applying limit switches to industrial valve applications should include consideration of:
  • Information Points – Determine what indications are necessary or useful for the effective control and monitoring of valve operation. What, as an actual or virtual operator, do you want to know about the real time operational status of a valve that is remotely located. Schedule the information points in operational terms, not electrical switch terms.
  • Contacts – Plan and layout a schedule of logical switches that will provide the information the operator needs. You may not need a separate switch for each information point. In some cases, it may be possible to derive needed information by using logical combinations of switches utilized for other discrete functions.
  • Environment – Accommodate the local conditions and hazards where the switch is installed with a properly rated enclosure.
  • Signal – The switch rating for current and voltage must meet or exceed those of the signal being transmitted.
  • Duty Cycle – The cycling frequency must be considered when specifying the type of switch employed. Every switch design has a limited cycle life. Make sure your selection matches the intended operating frequency for the process.
  • Auxiliary Outputs – These are additional contact sets that share the actuation of the primary switch. They are used to transmit additional signals with specifications differing from the primary signal.
  • Other Actuator Accessories – Limit switches are often integrated into an accessory unit with other actuator accessories, most of which are related to valve position. A visual local indication of valve position is a common example.
Switches and indicators of valve position can usually be provided as part of a complete valve actuation package, provided by the valve manufacturer or a third party. It is recommended that spare contacts be put in place for future use, as incorporating additional contacts as part of the original actuation package incurs comparatively little additional cost.

Employing a properly configured valve automation package, with limit switches delivering valve status or position information to your control system, can yield operational and safety benefits for the life of the unit. Good advice is to consult with a valve automation specialist for effective recommendations on configuring your valve automation accessories to maximize the level of information and control.

Succeeding: Engineer as Peacemaker

Miller Energy engineer
Make Allies, Not Adversaries

Let's take a step away from the technical, but still focus on an important aspect of our work.

As engineers involved in process measurement and control, we are accustomed to everybody else looking to us for answers and solutions. We are the people that make things work. Occasionally the pressure and stress can get a little intense and strip away some of our civility in our dealings with those around us. You may have bitter experience with this as either victim or perpetrator. It never ends well. With a private and candid self-assessment about how we view and interact with other stakeholders in our projects, we may be able to scale down some of our stress and better focus on the reality of the task at hand. Consider the points below. Comment and add a few points of your own.

You are an expert, but so are they.


Accept that, just as you have specialized knowledge that others do not, they have specialized knowledge or insight you may lack. Encourage the sharing of knowledge with those you interface with on a project. Try to be proactive and ask gently probing questions to ascertain the comprehension level of others involved in the project in various roles. Their increased understanding of key project technical concepts will promote more effective communication throughout the duration of the project. It can also help to avoid missteps in your own progress. Good people appreciate the time you take to provide basic explanation of concepts they may not fully understand, but need to know. Make valuable allies of the other project stakeholders by freely contributing your expertise. It is an investment that costs you little, but may pay immense dividends at some future time.

Everybody else's job usually looks easier than it really is.


All jobs have their own special challenges and responsibilities that generate stress. Accept the notion that you probably do not fully comprehend the burdens on those around you. Your portion of the project is certainly critical, but no more so than that of anybody else. Everybody needs to perform or nobody succeeds. Try not to view your project tasks as compartmentalized, but rather as part of the combined joint effort of all stakeholders. Help out others whenever you can. Again, make allies.  

Everybody is somebody's customer.


Whomever you deliver your work product to is your customer. The people delivering their work to you should view you as their customer. Make your customers happy by adjusting aspects of your procedures to better satisfy their needs. In a more technical sense, your modified process output becomes an improved input to their process. Small changes in your delivery may produce comparatively large returns in customer satisfaction. Allies.

Do not embarrass or demean others...especially in public settings.


Embarrassment breeds anger, a desire for revenge, and other bad and unproductive things. Avoid words and deeds that will make a coworker or stakeholder look bad in front of others. If there is a problem, if there is a mistake, try to deal with it discreetly whenever possible. Giving a someone a chance to repair a mistake before it becomes public builds value in your relationship. Certainly, there can be instances where more is at stake than someone's pride. Use good judgement to recognize when you can privately give someone an opportunity to amend a situation without causing harm.

Reach a common understanding of project scope and technical details


Your organization's management or your company's client, whatever the case may be, will likely have project expectations which will be clearly understood in their mind, but perhaps not fully described to all those tasked with specific performance. It is also possible, even probable, these same stakeholders will have misconceptions or a lack of technical knowledge about certain facets of the project. Omissions from the project specs and gaps in the common understanding of technical aspects related to the work requirements can easily turn a fairly straight forward task into a wildfire of organizational mayhem. The way in which these situations are handled must be diplomatic. Injured egos can do more damage to project harmony and progress than the facts ever will. The delivery method for the facts will likely be more crucial than the facts themselves.

It's not about being right. It's about being successful.


At our company we recognize customers are more than merely people that buy things from us. They are people to whom we contribute our time and talent to help achieve their success,... which inevitably will lead to ours. Never hesitate to let us know how we are doing, or how we can help.