Vortex Flowmeter Delivers High Performance in Harsh Process Conditions

Yokogawa vortex flowmeter
digitalYEWFLO Vortex Flowmeter
Courtesy Yokogawa
In the process measurement and control field, vortex flowmeters are noted for their ruggedness, versatility, comparatively high accuracy, and absence of moving parts. They are compatible with numerous applications requiring measurement of flow in gases, liquids, and steam. The Yokogawa digitalYEWFLO vortex flowmeter is an accurate and stable device, even in harsh process conditions, and has a highly reliable and robust design that can deliver improvements in plant efficiency and reduced operating costs. It is available in several versions, one of which is multivariable, providing a calculated mass flow rate output.

Operating Principle

When a shedder bar is placed in a flow, Karman vortices are generated on the downstream side of the bar. The Karman vortices are detected by two piezoelectric elements installed in the upper part of the shedder bar. The vortex frequency is proportional to the flow velocity in a specific range of Reynolds numbers. Therefore, flow velocity or flow rate can be determined by measuring vortex frequency.

Noise Reduction

Noise caused by strong piping vibration may affect the accuracy of vortex frequency detection. The two piezoelectric elements in the digital YEWFLO are installed in a configuration that is polarized, so they are not affected by vibration in the flow or vertical directions. The noise of vortex (lift)- direction vibration is reduced by adjusting the outputs of the piezoelectric elements. Combining these features with the Spectral Signal Processing (SSP) function provides optimum and stable measurement.

Share your process measurement challenges with a product application specialist. The sharing of ideas and information will produce the best outcome.


Handheld HART Communicator Boosts Field Technician Productivity

Handheld HART communicator for characterizing industrial process transitters
Yokogawa YHC5150X
The Yokogawa FieldMate family effectively supports the initial setup, daily maintenance, and troubleshooting for the maximum utilization of intelligent field instruments. FieldMate is a flag ship product of the FieldMate family which is a PC based full functional and full field protocol configuration tool. 

The YHC5150X FieldMate Handheld Communicator is the latest HART® Communicator from Yokogawa. All HART® field devices can be configured, polled, and trimmed utilizing a Windows Embedded CE™ based system for faster processing and greater storage capacity. All options are standard and no subscription is required. The YHC5150X is a full function, DD Direct, HART® Communicator supporting universal, common practice, and device specific commands for commissioning, configuration, and maintenance operations. 

A short listing of some of the more prominent features that make the YHC5150X a powerful universal HART communicator include...

  • Reads manufacturers' DDs in their native format without the need for translations 
  • HART®-compliant modem communicates with any registered or unregistered HART® Device 
  • Features an ergonomic, handheld design 
  • Enhanced 4.3" diagonal anti-glare touchscreen with color graphic display (no stylus required) 
  • Full QWERTY keyboard for commissioning new transmitters 
  • On-Demand Help Menus and teachable device-specific short cuts 
  • More than twice the battery capacity of any handheld communicator 
  • Manage device information through PC connection 
  • Integrated multi-language support
The video below provides additional detail and an overview of the product in action. More information on the HART Communicator, as well as other innovative products to improve productivity and effectiveness, is available from a product specialist.

Optimizing Level Control in Combined Cycle Gas Turbine Plants

Magnetrol® International and Orion Instruments®, both recognized global innovators in level measurement technology, provide optimizing solutions for liquid level control in combined cycle gas turbine plants and other similar applications.

An overall cost analysis can reveal savings in the range of 25% to 35% through the application of the most advantageous level measurement technology. Miller Energy, Inc. has developed a short presentation and discussion regarding recent developments now available in the Magnetrol® Eclipse Line of guided wave radar level instruments.

More detail is provided on the single page document provided below. Reach out to Miller Energy and learn how your operation may benefit from the application of guided wave radar level measurement technology.



Develop a Thoughtful and Comprehensive Alarm Plan for Process Control Operations

Petrochemical piping at industrial processing plant with process control
Petrochemical plants are one of many industrial process
control operations to benefit from comprehensive alarm plans
Industrial process control operators and designers have the capability to measure many aspects of machine operation and process performance. Determining the elements to measure, method of measurement, and how to handle and process the derived information can be challenging, but can also impact the security, performance, and safety of an operation. A plan for monitoring, reporting, and responding to abnormal process conditions, if properly developed and executed, can yield real benefits to a process operator. A protocol that is not well conceived may produce a negative operational impact by creating events that unnecessarily draw resources away from productive endeavor. That protocol, or plan, is often referred to as an alarm plan.

There are numerous forces that can influence the development and implementation of an alarm plan. Each operation must incorporate its own set of external regulatory requirements, internal procedures and policies into a complete alarm protocol. Distilling that macro description down to a workable set of procedures and response tasks is where the real work begins. There is, however, a basic framework that can help organize your thinking and focus on what is most important.

  • What parameters define the process or operation?
    Produce a schedule of every non-human element that is required to make the process function. This will require drilling down through every machine and material that is part of the operation. Expect the schedule to be extensive, even huge. If it is not, consider that your analysis may not be reaching deep enough. The goal here is to create an overview of what makes the process work and provide a tool for systematically studying the process elements and gleaning possible commonalities or relationships among them. Consider disregarding things that cannot be measured, since that prevents the derivation of data for evaluation. Review the completed schedule and decide which parameters shall be measured and evaluated for proper performance.
  • What level of measurement is needed for each monitored parameter?
    An assessment of the needed accuracy, frequency, and resolution for parameter measurement will help define the requirements for instrumentation or other devices used to monitor a particular item. The goal is to make sure the monitoring device is capable of detecting and delivering information of sufficient quality to make decisions.
  • Define the limits of acceptability for each monitored parameter.
    Until the endpoint of the process or operation, each step is likely dependent in some way on previous steps. The output of each step becomes the input of the next. While this, in many cases, may be an oversimplification, it is important to consider the relationships between the tasks and operations that comprise the process. Monitored parameters should relate to the successful completion of a process step, though not necessarily be a direct indicator of success. The maintenance of the parameter within certain bounds may be used as an indicator that a component of successful completion was properly attained. Defining limits of acceptability may involve an element of subjectivity and will likely be customized to accommodate the process. Each organization shall evaluate their operation and determine limits based upon intimate process knowledge and experience.
  • Define abnormal operation for each monitored parameter.
    Abnormal operation may not necessarily be any value not within what is considered acceptable. Consider abnormal to be the range of values that would be cause for notification of the operator, or even automated or human intervention. Note that the definition of unacceptable or abnormal operation might appropriately include filters or defined relationships with other parameters. An example of a simple filter is a time delay. If the measured variable exceeds the specified limit for 2 seconds, it make not be significant. If the threshold is exceeded for 2 minutes, it may be cause to take action. As with the limits of acceptability, developing the definition of abnormal operation for each parameter will be customized for each process.
  • Provide a defined response for every alarm occurrence.
    If it is important to monitor something, then it is likely important to do something when things get out of hand. Human executed alarm response should be concise and uncomplicated, to reduce the probability of error. Automated response should be designed in a manner that provides for functional testing on a regular basis. The scope of the response will be specific for each process, with the level of response depending upon factors determined by the process operators. Response can be as simple as annunciating the condition at a monitoring station, or as dire as shutting down part or all of the process operation.
  • Review every alarm event.
    Each alarm event should be logged and reviewed. Consider whether the event detection and response was adequate and beneficial. If the results were less than expected or desired, assess whether changes can be made to provide improved results in the future. The alarm plan is unlikely to be perfect in its first incarnation. Be prepared to reevaluate and make changes to improve performance.
The exercise of developing a comprehensive alarm plan will help to build understanding of process operation for all involved parties. This article is but a brief synopsis of the subject, intended to get the reader on the path of developing a useful alarm plan. Your alarm plan should an extension of process operation decision making, and have a goal of enhancing safety and reducing loss. Contact the process control and combustion specialists at Miller Energy for additional input.

Defending Industrial Control Systems From Cyber Attack

cybersecurity for industrial control systems
Cybersecurity is now a design element of all industrial
control systems
Industrial control system owners, operators, and other stakeholders should be aware of their exposure to malicious intrusion and attack by individuals or organizations intent on inflicting physical damage, stealing information, or generally wreaking havoc throughout an industrial operation. The risk of intrusion, regardless of the size or type of facility, is real and deserves the focused attention everyone involved in the design and operation of industrial control systems.

The National Cybersecurity and Communications Integration Center, part of the US Department of Homeland Security, ...
serves as a central location where a diverse set of partners involved in cybersecurity and communications protection coordinate and synchronize their efforts. NCCIC's partners include other government agencies, the private sector, and international entities. Working closely with its partners, NCCIC analyzes cybersecurity and communications information, shares timely and actionable information, and coordinates response, mitigation and recovery efforts. (from www.us-cert.gov/nccic)
The NCCIC has published a set of seven basic steps toward establishing a more secure industrial control system. I have included the publication below, and it is interesting and useful reading for all involved in industrial process control.

Having a fence around an industrial site, with a guarded entry gate, no longer provides the level of security needed for any industrial operation. Read the seven steps. Take other actions to build your knowledge and understanding of the risks and vulnerabilities. Cybersecurity is now another layer of design tenets and procedures that must be added to every control system. It will be a part of your company's best practices and success, now and in the future.

There are uncountable legacy controllers and communications devices throughout industrial America. All need to be reassessed for their vulnerability in the current and upcoming security environment. When reviewing your processes and equipment, do not hesitate to contact Miller Energy for assistance in your evaluation of our products.



LOGIIC - Cybersecurity Confederation for Industry Video

oil refinery with tanker ship
Oil Refinery
In response to the challenges presented by malicious or mischievous cyber operatives, a number of organizations joined together to collaborate in the design, testing, and implementation of tools and techniques to protect critical industrial systems on a global scale. LOGIIC (Linking Oil and Gas Industry to Improve Cybersecurity), as its name implies, focuses on the oil and gas industry. We should all know, however, that a substantial portion of the automation and process control devices we regularly utilize throughout many industries today were originally developed in the oil and gas industry, where the operational scale and risk level are sufficiently high to justify the costs of developing new technology, methods, and equipment.

LOGIIC participants include the Automation Federation, which brings the resources of world class device and software manufacturers to bear on cybersecurity issues of the day. The Cyber Security Division of the Science & Technology Directorate in the US Department of Homeland Security is also involved. Currently, five major oil companies are members.

Since its inception, LOGIIC has successfully completed eight major projects, with plans for many more. Upon completion of selected projects, LOGIIC delivers public reports to help elevate best practices across the entire industry. Both the member companies and the government are putting funds towards these projects which benefits not only the private sector, but also the public interest. Companies are applying the results within their organizations, because it helps bridge the gap between information technology and the industrial-environment sides of the organization.

LOGIIC is an organization that conducts activities and disseminates information that can be useful throughout your own organization and that of your customers and suppliers in the industrial process control field. Below is a video highlighting the organization and its work.

Video Reenactment and Analysis of Explosion at Chemical Storage Facility

Abstract image of explosion
Unfortunate events can provide useful lessons for industrial
process operators
Industrial accidents range in severity and impact from minuscule to catastrophic. As operators, owners, or technicians involved with industrial operations, we all have a degree of moral, ethical, and legal responsibility to conduct our work in a manner that does not unduly endanger personnel, property, or the environment. Maintaining a diligent safety stance can be helped by reviewing industrial accidents at other facilities. There is much to learn from these unfortunate events, even when they happen in an industry that may seem somewhat removed from your own.

The U.S. Chemical Safety Board, or CSB, is an independent federal agency that investigates industrial chemical accidents. Below, find one of their video reenactments of an explosion that occurred in Texas in 2013, along with their findings regarding the cause of the incident. Check out the video and sharpen your senses to evaluate potential trouble spots in your own operation.

Contact Miller Energy for any safety related information you may need concerning their lines of industrial process control products.