Wednesday, March 22, 2017

Q&A for Ultrasonic Level Switches

ultrasonic level switches
Ultrasonic level switches with single
and multiple level measurement points
Courtesy Magnetrol International
Ultrasonic level switches appear, at first glance, to be a renamed version of a vibrating tuning fork level switch. They have a similar appearance and tank mounting scheme, but a closer look at the technology of the two instruments reveals that they rely on different operating principles to indicate when liquid level reaches their fixed switch point.

A previous article , with an accompanying video, provided some comparison between the two detection methods. Here is the operational difference summarized. A vibrating tuning fork device monitors the resonant frequency of the vibrating fork and responds when the frequency shifts due to immersion of the fork in liquid. An ultrasonic level switch transmits an ultrasonic pulse across a gap, measuring the intensity of the received signal and determining whether the signal passed through liquid (high level received signal) or air (low level received signal). While both technologies are effective, the ultrasonic level switch can be applied over a wider range of liquid density and does not require recalibration or adjustment for a change in media density.

Magnetrol International, globally recognized innovator in level measurement technology and instruments, recently answered a few application questions in their blog about their Echotel ultrasonic switches. The questions, along with answers penned by Magnetrol's product manager Tom Kemme, are shared here.

Question: Can ECHOTEL be used in applications that have entrained air?

Answer: Yes, ECHOTEL ultrasonic switches can be used in applications that have entrained air. All ECHOTEL gap switches feature a tip-sensitive transducer that provides superior performance over side gap transducers that are offered by other companies. Side gap transducers allow gas bubbles to adhere to the upper surface of the gap, which cause false dry gap alarms. Tip sensitive transducers allow these bubbles to pass through the gap. Applications with severe turbulence or entrained air should use the Model 961 switch, which offers a time delay adjustment. Up to 10 seconds of delay can be used to disregard entrained air and reliably detect the true liquid level.

Question: We are considering adding level alarm switches to our process to provide high-high level indication in several tanks. Instead of switches with relay outputs, we are considering the current shift output. What are the advantages of a current shift output?

Answer: Current shift electronics simply shift the current output from 8 mA when the level switch is in the normal operation, to 16 mA to indicate a level alarm. ECHOTEL Model 961 also has a user selectable fault signal of 3.6 or 22 mA. Current shift switches are 2-wire loop powered, which allows them to be offered with intrinsically safe approvals. This allows these switches to be put into hazardous area locations at a lower cost since rigid conduit is not necessary. Since current shift switches provide constant indication of either a normal (8 mA), alarm (16 mA), or a fault (3.6 or 22 mA) condition, they are sometimes referred to as a transmitter for the price of a switch.

Share your level measurement requirements and challenges with process measurement specialists, combining your own process knowledge and experience with their product application expertise to develop effective solutions.