Showing posts with label Magnetrol. Show all posts
Showing posts with label Magnetrol. Show all posts

Simple Field Verification of Thermal Mass Flow Meter Calibration

Magnetrol brand industrial thermal mass flow transmitter for measuring mass flow of air and gases
Magnetrol TA2 Thermatel
Thermal Mass Flow Transmitter
Courtesy Magnetrol
In processes that require mass flow measurement of gases or air, thermal dispersion measurement technology is often selected for use. Its direct mass flow measurement and other attributes make this technology a favorable alternative for many applications, including combustion air, compressed air, natural gas, aeration air, vent lines, biogas production, vent lines, hydrogen lines, and more.

schematic of dual sensors on thermal mass flow meter
Schematic depiction of dual
temperature sensors on a
thermal mass flow meter
Courtesy Magnetrol
As it name implies, a thermal mass flow meter calculates flow by using temperature measurements. Two temperature sensors are inserted into the flow path. One measures the media temperature, the other is heated by a measured power source. With a device factory calibrated for a specific medium, the amount of heat transferred away from the heated sensor can be known, and will be proportional to the mass flow rate of the medium.

Some of the key attributes of thermal mass flow measurement devices:

  • Comparatively moderate initial cost
  • Compatible with measurement of low density gases that cannot be achieved with some other methods
  • Provides direct mass flow measurement
  • Most devices have option for output of process temperature
  • High turndown, with strong signal at low flow rates
  • Field calibration verification
Verifying the proper operation of transmitters of any type can be challenging, especially if performed in the field. The video below demonstrates how the Magnetrol TA2, a thermal mass flow transmitter, can have a calibration verification performed on site with a simple procedure.

The video is short and concise, with some valuable technical knowledge to build your understanding of how this technology works. More detailed information about mass flow measurement, or the specific devices shown in the video, is available from a product application specialist. Share your process measurement and control challenges with them and collaborate to develop the best solution.



Magnetic Level Indicators - Knowledge Base and Selection Guide

Orion Instruments Magnetic Level Indicators
Magnetic Level Indicators
Courtesy Orion Instruments
Industrial process control frequently involves the storage of liquid in vessels or tanks. Continuous and accurate indication of liquid level within the tank is an essential data point for safety and process management. While there are a number of methods and instrument types utilized to provide tank level measurement, the instrument of choice is often a magnetic level indicator, also referred to as a magnetic level gauge. Its use for providing level indication has a number of positive attributes:


  • Construction that is resistant to breakage.
  • Measuring indicators, switches, and transmitters mounted externally, without contacting the medium being measured.
  • Maintenance free operation. No regular cleaning needed.
  • Readable level indication from greater distance than glass sight gauges.
  • Magnetic level indicators can accommodate greater fluid level ranges without the need for multiple instruments.


Orion Instruments, a Magnetrol company and industry leader, has produced a comprehensive guide to magnetic level gauges, switches, transmitters, and related products. It delivers experts and newcomers an understandable and clear description of the technology and principals of operation behind magnetic level gauges and instruments. The guide also assists the reader in properly specifying and selecting the best instrument configuration for an application. A table of contents at the front of the document helps readers to quickly find the information they need.

Take a couple minutes to roll through the document and you are likely to find new and useful application tips and product information. Any questions about magnetic level indicators or your process measurement and control applications can be clearly addressed by a product specialist.





Guided Wave Radar for Hygienic Applications: Advantages Over Other Technologies

Guider Wave Radar
Guided Wave Radar
for Hygienic
Applications
Operating Principle

Guided wave radar is based upon the principle of TDR (time domain reflectometry). Pulses of electromagnetic energy travel via the waveguide. The pulse is reflected when it contacts a liquid surface and the distance is then calculated.

Guided wave radar transmitters are available with a 304 stainless steel housings designed specifically for use in hygienic applications. This instrument meets the needs and requirements for the wetted and non-wetted materials, process connections and surface finishes of hygienic industries.
Features
  • Low dielectric measurement capability (╬Ár >_ 1.4)
  • Volumetric output
  • Quick connect/disconnect probe coupling
  • Operates in visible vapors and ignores most foams
  • IS, XP, and Non-Incendive approvals
  • Ignores coating buildup
Advantage Over Other Technologies
  • Advantage over Differential / Hydrostatic Pressure Transmitter:  Replaced by Eclipse due to setpoint shifts, blockage, leakage, installation cost & long term calibration / maintenance
  • Advantage over Magnetostrictive: Replaced by Eclipse due to setpoint shifts, turn-down and clean ability & long term calibration / maintenance.
  • Advantage over RF Capacitance: Replaced by Eclipse due to dielectric shifts, coating issues & long term calibration / maintenance.
  • Advantage over Load Cells: Eclipse is more cost effective and long term cost of ownership is lower due to long term calibration / maintenance.
  • Advantage over Ultrasonic: Replaced by Eclipse due to vapors, condensation, temperature restrictions, foaming & turbulence.
  • Advantage over Through Air Radar: Replaced by Eclipse due to performance issues on low dielectric media, short range measurement because of dead band issues in small vessels, measurement issues when using false echo rejection from internal obstructions such as agitators and spray balls, signal attenuation from turbulence, foam, condensation and spray from spray balls used during cleaning or product filling. Through air radar can have issues from variable false echoes generated when spray hits the antenna when vessel is filled from spray balls.
For more information see this Guided Wave Radar bulletin: