Showing posts with label Yokogawa. Show all posts
Showing posts with label Yokogawa. Show all posts

E-Book on Fired Heaters and Combustion Efficiency

industrial equipment in high power boiler room
Modern high power boiler room
Yokogawa, globally recognized leader in a number of process control fields, has authored an e-book which provides useful insight into how operators of combustion based equipment and systems can improve efficiency and enhance safety by employing modern technology.

[All quoted passages in this article are from the Yokogawa e-book]

The Yokogawa e-book Combustion & Fired Heater Optimization offers “an analytical approach to improving safe & efficient operations” related to the use of combustion & fired heaters in the process industries. Through presenting an overview of combustion sources, such as furnaces and fired heaters, the book states that while “fired heaters pose a series of problems from safety risks to poor energy efficiency,” those problems “represent an opportunity for improved safety, control, energy efficiency and environmental compliance.” Fired heaters “account for 37% of the U.S. manufacturing energy end use.” Tunable Diode Laser Spectrometer (TDLS) technology helps mitigate safety concerns by “measuring average gas concentrations across the high temperature radiant sections.”

The book states that the four main concerns applicable to fired heaters are asset sustainability, inefficient operations, the operator skillset, and safety and compliance. Outdated diagnostics and controls have placed unnecessary stress on operator response, making sustainability of fired heaters difficult. The emissions of fired heaters are generally higher than designed, and can be coupled with control schemes for firing rates little changed over the past 40 years. Operators, generally, lack a clear understanding of design, and even engineering principles of heat transfer are not typically included in education related to fired heaters. Confounding the situation further, “many natural draft heaters do not meet this [safety regulation] guideline with existing instrumentation and control systems.” These complications combine to form a noticeable problem Yokogawa’s technology hopes to address. The company notes how the fired heater relies on natural draft instead of forced air, meaning the heaters “typically lack the degree of automation applied to other process units in the plant.” Offering a full detail of both the control state of most fired heaters and their systems defines the process situation currently considered common in the field, while emphasizing high excess air as providing a “false sense of safety.”

The proposed TDLS system allows for the measurement of “both the upper and lower conditions in a fired heater” by “simultaneously controlling the fuel and air supply based on fast sample intervals.” Safer burner monitoring and heater efficiency results from the TDLS measurements of CO, CH4, and O2. The optimization of air flow control reduces “O2 concentration … from 6% to 2%” and increases the furnace’s thermal efficiency. Combustion control is achieved by managing fuel flow and the arch draft. The TDLS integrated system works in tandem with already established logic solver systems in the plant. The TDLS technology works as a non-contacting measurement with “full diagnostic capability” and offers “distinct advantages over single point in situ analyzers” via reduction of false readings. Specific gas measurements, fast response time, optical measurement technology, and “high and variable light obstruction” are featured components of the TDLS system highlighted to show the technology’s durability and flexibility. The longevity and reliability of the system is showcased by how the TDLS combustion management system has been operational in a major refinery since 2010. The percentage of excess O2 in sample fired heaters has decreased by 1% to 1.5%. Measurements by the TDLS system have been verified by other gas analyzers. The furnace conditions in the plant are more efficiently monitored and controlled. As a result, the furnace in the functional environment is “now near its optimum operating point, using minimum excess air.”
Yokogawa presents a process-related problem, then details the key points of the problem while unpacking the causes. The e-book introduces Yokogawa’s technology, explains the mechanics, and demonstrates how TDLS acts as a solution to the problem, supported by a tangible example. The book offers great insight for both the operational principles of fired heaters and a new technology designed to maximize efficiency in the control process.


The e-book is included below. More detail is available from product applicationspecialists, with whom you should share your combustion and fired heater related challenges. Combining your own facilities and process knowledge and experience with their product application expertise will lead to effective solutions.


Applying Coriolis Flowmeters

coriolis flowmeter for industrial process measurement
Coriolis Flowmeter
Courtesy Yokogawa
Coriolis mass flow meters are widely used throughout the process measurement and control field. Their basic operating principle, combined with modern sensor and signal processing technology, provide a list of potential application advantages.
  • Directly measure mass flow based on the principle of measurement.
  • No "moving" parts (except the slightly vibrating sensor tubes).
  • Coriolis sensors have the ability to measure flow of non-conductive fluids.
  • Measure the mass flow rate with high accuracy.
  • Instruments can be applied across a wide usable measurement range.
  • Deliver density measurement based on oscillating frequency.
  • Not materially impacted by fluid viscosity or density.
  • Coriolis flow meters also do not need lengthy straight pipe sections upstream or downstream of the sensing unit.

SELECTION AND INSTALLATION RECOMMENDATIONS


Some considerations for product selection and installation of Coriolis mass flow meters:

  • Rapid temperature changes within the measured medium can impact measurement accuracy.
  • Wide ranges of connection types are available, specify the best match for your system.
  • Select sensor tube construction material to accommodate media characteristics.
  • For liquid measurement, the sensor tube will extend downward from a horizontal pipe run. 
  • As with most industrial products, there may be restrictions on where the device may be used. For example, not for use in aircraft. Assure that your application conforms with the intended usage of the instrument.
  • Install at least one tight shutoff valve adjacent to the instrument for purposes of zeroing. Isolation valves for inlet and outlet are preferred.
  • Follow manufacturer recommendations for pipe supports, if required, at inlet and outlet sides of the unit
  • Avoid installation at locations with high levels of vibration or strong electrical fields.
  • Locate the sensor unit at the lowest practical level in the piping system. This helps avoid collection of gas bubbles in the sensor tubes.
  • Sensor tubes need to be completely filled with subject medium to obtain accurate measurement.
  • Avoid the use of flexible connections and reducers at the unit connection points, unless in accordance with specific manufacturer guidelines.
The Coriolis flow meters of different manufacturers may have some particular recommendations, all of which should be followed to insure the best available performance, safety, and longevity of the unit.

Share your process instrumentation challenges and requirements with process measurement specialists, combining your process knowledge and expertise with their product application experience to develop effective solutions.

Mounting Options For DP Transmitters With Universal Mounting Bracket




This short video illustrates the ease with which numerous mounting configurations of DPharp transmitters can be accomplished in new and existing operations. The DPharp line of pressure transmitters utilize Yokogawa's top flight digital sensing technology for accurate process measurement of pressure and differential pressure in a multitude of applications.

Share your process measurement challenges with application experts, combining your process knowledge with their product application expertise to develop effective solutions.

Dynamic Compensation for Static Pressure Effects in Differential Pressure Measurement

DPharp gauge pressure transmitter
DPharp Gauge Pressure Transmitter
Courtesy Yokogawa
Attaining the best available performance and accuracy from any measuring device utilized in an industrial process is always advantageous. The scale of most industrial processes is such that even small inaccuracies in process measurement produce financially tangible impact. Differential pressure measurement, with wide application in the industrial process sphere, can be improved with the addition of a means to compensate for the real world effects of static pressure upon instrument performance.

Yokogawa Corporation has developed a means to dynamically compensate for static pressure effects in field measurements. The brief technical presentation below will help you understand how static pressure effects can impact your field measurements, as well as how Yokogawa’s Real-time Dynamic Compensation works to offset its impact.

More detailed product and application information is available from your Yokogawa specialist.



Basic Guide to Understanding Pressure

absolute pressure transmitter for industrial process measurement control
One style of absolute pressure transmitter
Courtesy Yokogawa
The impact of pressure on industrial processes would be difficult to understate. Pressure is an element of process control that can affect performance and safety. Understanding pressure concepts and how to effectively measure pressure within a process are key to any operator's success.

Yokogawa, a globally recognized leader in process measurement and control, has made available a handbook on pressure that covers a range of useful topics. The content starts with the very basic concepts and moves quickly to practical subjects related to process measurement and control.

The handbook will prove useful to readers at all levels of expertise. Share your process measurement challenges with application specialists, combining your process knowledge with their product application expertise to develop effective solutions.



Handbook on pH and ORP Measurement

pH ORP analyzer transmitter
Dual input pH analyzer and transmitter
Courtesy Yokogawa
Measurement of pH/ORP is a common operation throughout a number of industries. Obtaining true measurements and making correct interpretation of the results can prove challenging without solid working knowledge of the methodology and procedure involved. Certain effects have the ability to cause problems if not taken into consideration.

The book provided below, authored and provided by Yokogawa Electric Corporation, provides a comprehensive understanding of pH/ORP measurement and how to achieve reliable results. Basic information on the principles of measuring pH/ORP, construction of the sensing elements, and their basic use in process applications is provided.

A part of achieving accurate and reliable pH/ORP measurements includes the provision of sufficient electrode strorage conditions and proper maintenance. Prevention of common errors during maintenance and storage, as well as consistent detection of loop failures is important. This book describes how to avoid pitfalls and detect failures.

The book is accompanied with a frequently asked question and answer section as well as an appendix that includes helpful information like a Chemical Compatibility Table and a Liquid-Application-Data-Sheet, which can be used to describe the user’s application.



Yokogawa Data Acquisition Unit Product Changes

data acquisition units for process control and automation
The DX1000 and DX2000 are among the potential
replacements for the discontinued CX Series
Modern industrial process control has ever increasing demands for data acquisition. The ability to rapidly gather and process measurements into control and management decisions and reports is essential to efficiency, safety, and profitability. Yokogawa has been a leading manufacturer in the data acquisition sphere for decades, and has made some changes in its product line to maintain its leadership position.

The model CX 2000 was discontinued at the end of February. It combined data acquisition, display, control, and networking in a single unit. A scaled down version, CX 1000 was previously discontinued. The company recommends possible replacements to include one or more of the following products:

  • Advanced Application Temperature Controller UT75A
  • Button Operated DX1000/DX2000
  • General Purpose Temperature Controller UT35A/UT32A
  • Mid-level Temperature Controller UT55A/UT52A
  • TC10 Temperature Controller
  • Touch Screen GX10/GX20
  • US1000 Digital Indicating Controller
  • UTAdvanced UT32A-D
  • UTAdvanced UT32A-V/C/R
The DX2000 Daqstation is a mature product with a solid portfolio of field installations. It can accommodate display, recording, networking, and storage of data on up to 48 input channels. Input types include DC voltage, contact signal, RTD, and thermocouple. Ethernet connection enables remote access via a website and the unit can provide email alerts. There are numerous effective and user-friendly features included with the DX2000, which incorporates Yokogawa's decades of experience with recording and data acquisition.

Whatever your data acquisition needs and challenges, the best solutions will result from combing your process expertise with the knowledge of a product specialist. Reach out to them and get results.


Yokogawa Users Conference and Exhibition is Coming

Yokogawa is presenting its 2016 Users Conference and Exhibition in Orlando, Florida. The event runs from October 3 through October 6 and will be held at the Renaissance Orlando at SeaWorld hotel. Included in the conference agenda are informative technical sessions, training workshops, panel discussions, hands-on demonstrations, essential application sessions, and daily keynote speakers. The opportunities for networking and learning are truly unique and rewarding for those involved in process automation and control.

There is currently a call for presentations, seeking out those who wish to share their applications and challenges. Learn more about the conference and register at the event website.



Yokogawa Publishes New Collection of Case Studies in Process Automation and Control

Yokogawa, an internationally recognized process automation and control provider, strives for customer satisfaction through operational excellence, bringing long-term success to its customers. Now available are collections of actual cases in which Yokogawa helped leading companies in a variety of industries address specific challenges and achieve their goals. The new e-books were redesigned and subdivided into six sectors including LNG, Oil & Gas, Chemical, Pharmaceutical, and Renewable Energy.

Browse the e-books online for insight into the breadth and depth of Yokogawa's capabilities and their commitment to their customer's success. Depending on your screen size, you may need to scroll down the page to see the e-books at the link. At e-books, you can browse using the online reader, or download them as a PDF file.

Share you process control challenges with a Yokogawa representative and expect the best solutions.

Save Time And Get The Right Product With Yokogawa Automated Selection Tool

Yokogawa Corporation of America, an industry recognized source for innovative process measurement and control products, has made available an easy to use product selection tool for those navigating through the company's extensive product offering. The Product Finder is a great time saver that enables a user to quickly locate product and technical information on Yokogawa process instrumentation products meeting the user's selected criteria.

Let's step through a quick example. You will see how this quick and easy to use tool saves time by navigating quickly to the website pages detailing products meeting your requirements.

The Product Finder is accessible through a number of links throughout Yokogawa's network of representatives. Clicking the link lands you on the start page of the Product Finder. For this example, I am going to search for a flow meter with the following characteristics:


  • Mass flow measurement 
  • Non-conductive liquid
  • Accuracy of 1%
  • Flow measurement device must have an integral transmitter
  • Tri-clamp connections



Above, I declared my location as United States. The next step, shown below, is to select "Flow" as the measurement parameter. You will see in the drop down menu that there are many measurement elements that can be selected, with Yokogawa products for each.


My selection of "Flow" from the drop down menu returns all of the company's flow measurement devices, of which there are many (this cropped screenshot, shown below, only shows four, but there were many more) . This is where the selector really helps you. Instead of examining several or many different models, the user can focus the search by adding more product characteristics. You can see the list of prompting questions on the left side of the page. Providing additional characteristics by answering the prompting questions will narrow the search results to the show only the products meeting all the criteria specified by the user.



The next image (below) shows all of my sample product attributes entered on the left column. Note that there is now only a single product that matches all of my sample criteria. The whole process took less than two minutes. By clicking on the "View More Details" button below the product image, I gain access to all of the available technical, support, and product data for my selected flow measurement device.


The process instrumentation specialists at Miller Energy are available to provide additional help in meeting your measurement challenges. Combine their product knowledge and expertise with your process know-how for the best solutions.

Vortex Flowmeter Delivers High Performance in Harsh Process Conditions

Yokogawa vortex flowmeter
digitalYEWFLO Vortex Flowmeter
Courtesy Yokogawa
In the process measurement and control field, vortex flowmeters are noted for their ruggedness, versatility, comparatively high accuracy, and absence of moving parts. They are compatible with numerous applications requiring measurement of flow in gases, liquids, and steam. The Yokogawa digitalYEWFLO vortex flowmeter is an accurate and stable device, even in harsh process conditions, and has a highly reliable and robust design that can deliver improvements in plant efficiency and reduced operating costs. It is available in several versions, one of which is multivariable, providing a calculated mass flow rate output.

Operating Principle

When a shedder bar is placed in a flow, Karman vortices are generated on the downstream side of the bar. The Karman vortices are detected by two piezoelectric elements installed in the upper part of the shedder bar. The vortex frequency is proportional to the flow velocity in a specific range of Reynolds numbers. Therefore, flow velocity or flow rate can be determined by measuring vortex frequency.

Noise Reduction

Noise caused by strong piping vibration may affect the accuracy of vortex frequency detection. The two piezoelectric elements in the digital YEWFLO are installed in a configuration that is polarized, so they are not affected by vibration in the flow or vertical directions. The noise of vortex (lift)- direction vibration is reduced by adjusting the outputs of the piezoelectric elements. Combining these features with the Spectral Signal Processing (SSP) function provides optimum and stable measurement.

Share your process measurement challenges with a product application specialist. The sharing of ideas and information will produce the best outcome.


Coriolis Mass Flow Meter - Operating Principle, Applications, Advantages

Coriolis flow meter by Yokogawa
Coriolis Flow Meter - Courtesy Yokogawa
Coriolis mass flow meters are widely used throughout the process measurement and control field. Their basic operating principle, combined with modern sensor and signal processing technology, provide a list of positive aspects.

Directly measure mass flow rate based on the principle of measurement.

Measure the mass flow rate with high accuracy of ±0.1%.

Provide a wide usable measurement range.

Deliver density measurement based on oscillating frequency.

Not materially impacted by fluid viscosity or density.

Coriolis flowmeters also do not need straight pipe sections upstream or downstream of the flowmeter. They also have the ability to measure non-conductive fluids. 

I have included an interesting video, produced by Yokogawa, a world class manufacturer of industrial process measurement and control instrumentation. It provides a clear and insightful illustration of the Coriolis principle and how it is used to provide accurate mass flow measurement.

Share your process measurement and control challenges with an instrumentation specialist. Combining your detailed process knowledge and their product application expertise will yield positive solutions.



Digital Sensor Technology: An Uptick in Measurement Performance

Electron microscopy image of Yokogawa DPharp silicon resonant sensor
Silicon Resonant Sensor
Courtesy Yokogawa
Industrial process control, as a field of endeavor, is a continuous quest for better, safer, and higher output. The road of progress is paved with new technologies that deliver higher accuracy and reliability in measurement. A recently commercialized advance is the silicon resonant sensor used to measure pressure in industrial process settings. One manufacturer, Yokogawa, applies this technology throughout their DPharp line of differential pressure transmitters, with numerous industrial applications.

Some of the positive attributes of this latest generation of digital pressure sensor include:


  • Simultaneous measurement of differential and static pressure.
  • Superior digital precision
  • No A/D conversion needed
  • High performance 
  • Temperature effects limited to 10 ppm/deg Celsius, yielding highly stable performance
  • High signal to noise ratio
  • Output level increase of more than four times over previous generation piezoresistance silicon sensor

The features all add up to a substantial improvement over previous technology, delivering an incremental step up in measurement performance and confidence. You can quickly boost your understanding of how the sensor technology works by viewing the short video below. To explore how the Yokogawa DPharp sensor equipped transmitters can provide better performance to your process, contact a product specialist and share your process measurement challenges.


Multivariable Transmitter Delivers Mass Flow Rate and More

Process measurement multivariable transmitter
Model EJX 910A Multivariable Transmitter
Courtesy of Yokogawa
Industrial process measurement and control is charged with continually producing better, faster, and cheaper results with increasing levels of safety. For applications requiring mass flow rate measurement of fluids or tank level, a multivariable transmitter has much to offer when it comes to improving outcomes throughout your industrial process operation.

The EJX 910 series from Yokogawa provides the latest generation of digital sensing and processing to provide fast and accurate process measurement of temperature, static pressure, differential pressure, and dynamically compensated mass flow. Flow accuracy as high as +/-1.0% is achievable, along with:

±0.04% Differential Pressure Accuracy
±0.1% Static Pressure Accuracy
±0.9°F External Temperature Accuracy

Some other highlights include:

  • Industry leading fast response time for safe and accurate process control.
  • Yokogawa's specially developed DPharp digital sensor providing simultaneous static and differential pressure measurement, digital accuracy, and no A/D conversion error.
  • LCD display can be rotated in 90 degree increments. External zero adjustment screw and range setting switch enhance field setup.
  • Improved mass flow accuracy of +/- 1% from multivariable operation in one device with dynamic compensation.
  • Signal characterizer for measuring level in irregular shaped tanks.
  • Utilizes industry recognized open communication protocols for easy integration into existing installations.
The manufacturer's white paper, describing precisely how the unit works and how it can be applied, is below. Browse the white paper for some additional detail, but consult with a product specialist to explore how to improve your process measurement and control performance. They have even more information than is provided here which, when combined with your process knowledge, is sure to generate a positive solution to any challenge.



Connecting Modbus Transmitter to USB Converter

Multivariable Industrial Transmitter
EJX910 Multivariable Transmitter
Courtesy Yokogawa
Industrial process measurement and control utilizes transmitters in abundance. There may be instances where, for convenience or due to equipment changes, the output signal from the transmitter will need to be converted to a different protocol or format. Yokogawa has produced an instructional video showing, in a clear and understandable way, how to install a signal converter on their EJX910 Multivariable Transmitter. While the instructional video shows a conversion from Modbus to USB, the knowledge and understanding gathered from the short video will help you to meet other signal conversion challenges that may arise in your facility.

Your investment of five minutes to watch the video will generate returns by increasing your understanding and allowing you to move forward with confidence when a signal conversion task inevitably comes up. More information on signal conversion products, as well as process measurement transmitters, is available from an application specialist. Enlisting their help to generate solutions to your industrial measurement and control requirements is also a good investment of your time.


Liquid Density Measurement for Industrial Process Control

Yokogawa Liquid Density Meter
DM8 Liquid Density Meter
Courtesy Yokogawa
Density is certainly a fundamental physical attribute of any liquid that is the subject of a process control operation. The ability to accurately measure liquid density in a process application is achievable using specially applied technology from Yokogawa.

The company's latest version, the model DM8, is a vibration type liquid density analyzer with reliable, multi-function operation. It is the culmination of manufacturing and density measurement technology experience extending back over 40 years. The DM8 employs a converter with an incorporated microprocessor to directly convert sensor frequency signals into displayed density values. One touch calibration, internal diagnositics, and digital communications are also provided.


The DM8 liquid density analyzer measures liquid density of general process liquids with high sensitivity and excellent stability. It has a measuring density range of 0 to 2.0 g/cm3, and is unaffected by flow rate and viscosity. Sensor options include general-purpose, sanitary, and explosion proof versions.

The brochure below provides additional detail on application configuration, product specifications, and operating principle. Share your process process measurement challenges with a product specialist to achieve the best solution for your application.




Industrial Process Application of Tunable Diode Laser Gas Analyzer

Yokogawa TDLS200 Tunable Diode Laser Gas Analyzer
Yokogawa TDLS200 Tunable Diode Laser Gas Analyzer
Photo courtesy Yokogawa Corp.
Yokogawa continues to innovate in the industrial process measurement and control field with their TDLS200 Gas Analyzer. Based on tunable diode laser spectroscopy, these industrial instruments offer calibration stability and fast in situ measurement. They can also be applied in a manner that avoids interference from other gases present in the sample. In the company's own words...

The new Yokogawa TruePeak Tunable Diode Laser Spectroscopy (TDLS200) Analyzer is one of the most robust process analyzers available designed to make fast, accurate measurements on near-infrared absorbing gases in harsh process environments, where conditions are of high temperature or pressure, it can be used under difficult conditions including environments involving corrosive, aggressive and high particulate content materials. 


The TruePeak Tunable Diode Laser Spectroscopy (TDLS200) Analyzer is ideally suited to in-situ analysis, particularly for measurements in environments involving changing pressure or temperature. It can operate with process pressures up to 20 bar absolute and process temperature up to 1500°C, has a fast response (from 2 to 20 seconds), and is interference-free for most applications. 


It can measure Carbon monoxide (CO), from low ppm detection limits to percentage levels at process temperatures of up to 1500°C. The analyzer can also be used for measuring parts per million moisture content in corrosive and aggressive process streams including chlorine and hydrocarbons.


The industrial applications for this technology, integrated into an intuitive and user-friendly equipment package, are extensive. Included below is a white paper authored by the company that explains the operating principles, installation and configuration, and capabilities of the unit. Contact a product specialist about your gas measurement and analysis requirements. See how the capabilities of the TDLS200 can improve your process performance.


Recording, Data Logging, and Process Control - Consolidated or Separate Devices?

Yokogawa CX2000 Integrated Controller and Data Acquisition Device
Integrated  Controller and Data Acquisition Device
Courtesy Yokogawa
Are you a designer or builder of process control systems? Selecting hardware and componentry to provide the functionality, accuracy, and accessibility required to meet process or equipment performance demands can pose some very distinct challenges. When faced with a scope of work that includes multiple PID control loops, data recording, and networking, do you tend to favor using a collection of separate devices for each function, or a consolidated unit that integrates all of the needed functions?

I have designed many control systems throughout my career, and tended toward using separate devices initially. As I gained experience and the feedback that comes from having units in the field for a number of years, my thinking changed and my preference for integrated "single box" solutions began to predominate.

Some reasons to use a consolidated device:

  • Likely to take up less panel space than a combination of individual devices.
  • Substantially reduced wiring, cabling.
  • No tasks associated with getting individual devices to work together, if that is needed. The integrated unit comes out of the box with all of that already accomplished.
  • Reduced parts count.
  • Simplified panel wiring plan.
  • A single HMI encompassing all the provided functions.
  • Anyone, end users, service techs, trainers, quality control, that needs to learn about the operation of the system has a single instruction manual to review or learn. Since the functions all come in one unit, there is often some streamlining to the learning process.
  • OEMs may be able to use a single component to provide the necessary functions for numerous product versions, bringing measurable time savings throughout the product design, fabrication, and support functions of their organization.
  • If spares are required, there is only one.
I have enjoyed good results employing devices that combine numerous functions into a single package. There is a data sheet below, so you can see more about an industrial control, recording, networking device that packs a useful range of functions into a compact unit. 

On your next process control project, consider whether going consolidated or discrete is better for your needs. Talk to a process controls expert and get some additional input. Good solutions are out there.





Application Advantages of Wireless Sensors for Process Measurement and Control

Industrial Wireless Access Point
Industrial Wireless Access Point
Courtesy Yokogawa
Wireless sensor technology is not new, but is still in an adoptive stage in many industries. New technologies are commonly adopted first by companies and industries that can justify the premium cost of newly released technology. The adoption process is similar to that of business computers. Early models were incredibly expensive to purchase and required a very large budget to keep operational. As time passed, the machines became less expensive to purchase and own, allowing a greater segment of the business world to justify their purchase and use. Wireless process measurement and control is following a similar path, with more and more facilities considering the potential for application of these devices.

I had always considered wireless sensing devices as a great way to be rid of cabling, but limited my thinking to fixed installations. A personal confession....Sometimes it's really hard to get my mind out of the box when I tape it shut. Anyway, I came across this application case from Yokogawa, a leading worldwide manufacturer of process measurement and control equipment and an enormous array of other industrial equipment. The case study illustrates how a tire manufacturing operation used wireless sensing technology to enhance the performance of their pressure test setup. The case study, shown below, shows the actual product part numbers used and provides a schematic and description of how the system was beneficially used. After my own reading of the case, I am now thinking of more potential applications that could benefit from a wireless configuration.

Read the case, it's short and concise. A sales engineer can provide you detailed information on the specific products used in the application. If you come up with some potential wireless process measurement applications of your own, contact an application specialist and explore the possibilities.



Process Gas Chromatograph with Practical Implementation of Parallel Chromatography

Process Gas Chromatograph - Yokogawa
GC8000
Process Gas Chromatograph
Courtesy Yokogawa Corp.
Gas chromatography is a common analysis tool employed in many areas of industry, including oil and gas, pharmaceutical, chemical, and others. Yokogawa Corporation of America has developed and been delivering top tier GC performance with their GC8000 Process Gas Chromatograph for use in oil and gas, and other industrial applications.

In addition to the ruggedness and reliability for which Yokogawa gas chromatographs are well known, the GC8000 brings a number of innovations and improvements to the company’s process gas chromatography product offering.

> Color touchscreen HMI for easy operation

> Advanced predictive diagnostics and software functions monitor key performance indicators during each analysis to verify analyzer is operating within proper tolerances.

> Parallel chromatography is made practical through the use of the GC Modules provided as part of the GC8000. Virtual GCs can be set up inside a single GC with GC Modules to measure multiple streams simultaneously.

The graphics below expand on this overview of the GC8000 Process Gas Chromatograph, the culmination of Yokogawa’s 55 years of experience in the field. For more detailed information, or to discuss your application specifics, contact a product specialist.