Showing posts with label Pennsylvania. Show all posts
Showing posts with label Pennsylvania. Show all posts

Understanding How Flame Arresters Work


Flame Arrester
A Flame Arrester (or arrestor) is a passive devices with no moving parts, that allows hot gas to pass through, but stops a flame in order to prevent a larger fire or explosion.  Flame Arresters uses a wound metal ribbon type element that prevents the spread of flame from the exposed side of the arrester to the protected side of the arrester. The metal element's construction provides a matrix of engineered openings that are carefully calculated and sized to quench the flame by absorbing the flame's heat. As an explosion flame travels through a narrow metal space, heat is transmitted to the walls, energy is lost and only vapor gasses are able to pass through. Flame Arresters are used in many industries chemical, petrochemical, pulp and paper, refining, pharmaceutical, mining, power generation, and wastewater treatment.

Cashco Flame Arresters are specifically engineered to match the explosive mixtures Maximum Experimental Safe Gap, in order to ensure complete extinction of the flame. At the heart of each Cashco flame arrestor lies filter discs that consists of wound, smooth and channeled strips of stainless steel set at specific maximum experimental stage gaps the smaller the gaps are which the flame travels the more heat and energy is lost therefore the filters gap width and gap length are specifically engineered to match the explosive mixture in order to ensure complete extinction of the flame. 

To learn more about Cashco flame arrestors, contact Miller Energy, Inc. by calling 908-755-6700 or by visiting https://millerenergy.com.


Interface in the Field: Achieving Reliable Interface Measurement to Optimize Process and Increase Uptime

Interface or multiphase level measurements exist throughout the Oil & Gas streams as well as Petrochemical. While level measurement technologies have come a long way in effectively measuring liquids and solids, multiphase level measurement continues to be the biggest challenge and opportunity that exists today to which there is no perfect technology.

However, experience has shown that process optimization and increased uptime can still be achieved in many separator applications through reliable, best-in-class, level technology.

The objective of this paper is to review interface challenges, the current technologies being utilized for interface, field experience in various applications to achieve process optimization and increased uptime, and the future of reliable interface measurement.

DOWNLOAD THE TECHNICAL PAPER HERE

Courtesy of Magnetrol and Miller Energy, Inc.
https://millerenergy.com
800-631-5454

The Magnetrol ECHOTEL 962 Dual Ultrasonic Level Control


The Magnetrol ECHOTEL Model 962 is a dual point switch that can be used as a level controller, or to control pumps in an auto fill or auto empty mode. The tip sensitive lower gap performs well in aerated or foamy liquids, and can measure to within 1.4" of the vessel bottom. The rigidity of the unique flow-through upper gap allows separations of up to 125" (318 cm) between the upper and lower transducer gaps.

The Magnetrol ECHOTEL 962 offers the ultimate solution to reliable dual point liquid level measurement. This advanced switch uses pulsed signal technology for superior performance in difficult process conditions, and to provide excellent immunity from sources of electrical noise interference. Extensive self-testing of the electronics and transducer make this advanced switch suitable for use in Safety Integrity Level (SIL) 2 loops.

The ECHOTEL Model 962 is equipped with advanced diagnostics that continuously check the sensor and electronics. The diagnostics also alarm for electrical noise interference from external sources.

Ultrasonic contact switches use a pair of piezoelectric crystals that are encapsulated in epoxy at the tip of the transducer for level measurement. The crystals are made of a ceramic material that vibrates at a given frequency when subjected to an applied voltage. The transmit crystal converts the applied voltage from the electronics into an ultrasonic signal. When liquid is present in the gap, the receive crystal senses the ultrasonic signal from the transmit crystal and converts it back to an electrical signal.

Miller Energy, Inc.
https://millerenergy.com
800-631-5454

ASCO Express Product Catalog

The ASCO Express program features a range of flow control products and accessories available for shipment the same day you order them. The products listed in this catalog provide the performance required for a variety of system and process applications including boiler, air handling, process control, and water and steam control. The control voltages available for each product are the primary voltages used in industrial and commercial applications today.

908-755-6700

Water and Wastewater Treatment Applications for the Magnetrol R82 Pulse Burst Radar Transmitters


The Magnetrol R82 Pulse Burst Radar transmitter performs across a wide range of applications. The R82 is designed to provide radar reliable process measurement in challenging, vapor saturated environments, at the cost of what you pay for an ultrasonic device. For water treatment, the Magnetrol R82 Pulse Burst Radar transmitter provides continuous level measurement at the lift station and coagulant feed tanks, in settling tanks during clarification, in polymer, filter, and lime slurry tanks during filtration, and for open atmosphere water reservoirs where the control technology must withstand punishing weather conditions.  In wastewater facilities, the R82 radar can control level at the lift station pump, open channel flow and screening system, monitor feed tanks containing chemical coagulants oxidants and phosphorous precipitation, measure splitter box in clarifier levels, control corrosion inhibitors, manage pH adjustment, mixed liquor and secondary clarifier levels, as well as activated sludge and digester level control.

Miller Energy, Inc.
https://millerenergy.com

How Do Pilot Operated Tank Relief Valves Work?

Storage tanks become pressurized when liquid is pumped in and compresses the existing tank vapor. Tanks also become pressurized due to increasing ambient temperatures, which cause the tank vapor to expand. To mitigate damage from these expanding tank vapors, pressure relief valves are installed on tanks to prevent structural damage resulting from over-pressure.

Here is an excellent animation, courtesy of Cashco, that shows how a pilot operated relief vent protects a storage tank from over pressurizing during a pump-in situation or during thermal heating conditions.


For more information on tank relief valves, contact Miller Energy at www.millerenergy.com or by calling 908-755-6700.

Common Instrumentation Requirements for Industrial Boilers

Instrumentation Used on Industrial Boilers
Typical boiler instrumentation layout.
(courtesy of Yokogawa)
Boilers are used in a broad range of industries such as electric power, pharmaceuticals, chemicals, ceramics, and paper and pulp. Amid the rising energy costs, tightening environmental regulations, and increasing awareness of safety as of late, the needs for high efficiency operation, low emission operation, and safe and stable operation of boilers are growing.

In order to ensure the air and fuel are combusted at an optimal ratio, the waste of fuel is eliminated, and the exhaust gas is cleaned, real-time monitoring of the oxygen concentration of combustion gases is required. Equipped with an oxygen sensor unit with a longer life span, the Zirconia Oxygen Analyzer ZR series are capable of measuring an oxygen concentration with high reliability. The Stack Gas Analyzer monitors exhaust gas components such as NOX, SO2, and CO2 in order to ensure low emission operation.

A single-loop controller can be used to properly distribute control functionality. Offering the advantages of flexibility of building distributed control systems, simple maintenance, compatibility with conventional systems, and the like, the YS1000 Series of Single-loop Controllers are ideal for safe and stable operation at low costs.

In order to ensure highly efficient and safely operated boilers, it is also indispensable to accurately monitor the drum level and steam flow rate. The EJA and EJX Series of Differential Pressure Transmitters are capable of measuring the drum level with high stability even in actual applications at high temperatures and high pressures. The DY Series MV TYPE of Vortex Flowmeters with a simple construction employ a built-in sensor to measure the steam mass flow with high reliability.

Yokogawa offers a wide variety of sensors and controllers that are used to monitor and operate boilers, and contributes to increasing the efficiency and environmental performance of boilers, as well as ensuring their safe and stable operation.

Recommended Products for Boiler Applications


  • Drum Level Measurement - EJA/EJX transmitters
  • Combustion Control - The YS1000 Dual CPU Loop Controller
  • Steam Flow Measurement - Digital YEWFLO MV Type
  • Combustion Monitoring - Zirconia Oxygen Analyzers and AV550G Multi Oxygen Sensor Converter

For more information in Eastern Pennsylvania, New Jersey, Metro New York or Delaware contact:
Miller Energy by visiting https://millerenergy.com or by calling 908-755-6700 in New Jersey, or 610-363-6200 in Pennsylvania.

Breakthrough Solenoid Valve Technology for Upstream Oil and Gas Heating Equipment

A white paper courtesy of ASCO Division of Emerson Automation
fuel shutoff valves
Fuel shutoff valves (ASCO)
Low-temperature stainless steel fuel shutoff valves are usually utilized for on/off control of fuel gas within gas fuel trains in process heating system burners. These systems are widely used by oil and gas firms as well by as original equipment manufacturers (OEMs) that produce gas heating equipment or burner management systems (BMSs) and controls in upstream oil and gas pipelines and tanks.

For valve manufacturers, these uses present a relatively specialized, rather challenging application. Environmental conditions at the point of use are often difficult. Ideally, valves should deliver reliable operation despite constraints on factors ranging from power consumption to service availability. Conversely, outdated controls can pose problems — including poor performance, noncompliance with current regulations, and triggering of environmental concerns.

In recent years, a new generation of solenoid valve technology has been changing the shutoff valve game. Their modern designs provide pipeline and tank heating systems with robust, durable performance; safety; and regulatory compliance — all while increasing efficiency and productivity.

Download the PDF version of "Breakthrough Solenoid Valve Technology for Upstream Oil and Gas Heating Equipment" here, or review it in the embedded document below.

Miller Energy, Inc.
https://millerenergy.com
New Jersey: 908-755-6700
Pennsylvania: 610-363-6200