Showing posts with label New York. Show all posts
Showing posts with label New York. Show all posts

Cashco / Valve Concepts Model 3100 Packing Material Removal and Weight Installation Instructions

Valve Concepts Model 3100
Valve Concepts Model 3100
The Model 3100 end-of-line conservation breather vent is part of the Valve Concepts, Inc. modular vent product line. The Model 3100 can easily be field converted to a vacuum only vent, a pressure/vacuum vent with pipe away and can either be direct acting or pilot operated.

The Model 3100 end-of-line conservation breather vent is designed for use on atmospheric and low-pressure storage tanks where pressure and vacuum relief is required.

How it Works

Weight loaded pallets in the vent housing allow the intake of air and the escape of vapors as the tank breathes due to thermal changes and product movement in and out of the tank. The pallets open and close to permit in breathing and out breathing necessary to maintain the tank pressure within permissible limits to avoid damage to the tank.

Miller Energy - Industrial Instrumentation & Process Control Equipment

Miller Energy is a Manufacturer's Representative and Distributor of Industrial Instrumentation and Process Control Equipment. Since 1958, we have been committed to exceeding our customers expectations by providing an unparalleled level of customer service and local technical support. We offer the most comprehensive line of measurement, control, and communication solutions in the Industry today. The products we represent solve challenging applications in the Industrial Gas, Power, Refining, Chemical / Petro-Chemical, Food & Beverage, Water/Wastewater, and Pharmaceutical markets.

NJ 908-755-6700 
PA 610-363-6200

Electronic to Pneumatic Converter

illustration of setup for current to pneumatic converter
Component schematic using electronic controller and pneumatic
control valve
Image courtesy of Yokogawa
A straight forward device, the current to pneumatic converter produces a pneumatic output signal that is proportional to an electrical control level input signal of 4 to 20 mA or 10 to 50 mA. This provides a useful interface between electronic controllers and pneumatically operated valves, air cylinders, or other air operated control elements.

Pneumatic signals are regularly used throughout many installations as matter of safety, legacy, or because a pneumatic signal can provide motive power to an operating device such as a valve positioner. Electrical control signals can be transmitted long distances across wires to deliver control signals to operating elements. The current to pneumatic converter provides a bridge between the two systems and allows the most beneficial aspects of each to be brought to bear on process operation.

Converters are available in standard variants that accommodate a number of hazardous location designations, as well as several output pressure ranges and calibrations. Share your process control connectivity challenges with application specialists, combining your own process knowledge and experience with their product application expertise to develop effective solutions.


Valves for LNG and CNG Operations

high pressure valve intended for use with natural gas
Valve specially designed for gas extraction operations
has integral bypass which equalizes pressure across the
valve prior to opening the main line, reducing torque
requirements and  piping stress.
Courtesy Habonim
The production and distribution of natural gas presents operators with substantial logistical, safety, and physical challenges. Maintaining flow control, containing, and dispensing of natural gas, CNG, and LNG are hazardous endeavors requiring special equipment configuration throughout the supply chain.

Source and pipeline operations are faced with high pressure and extreme working environments. At various points along the distribution path, valves will be needed to regulate or direct flow and isolate portions of the system for safety or service. Emergency shutdown valves must be configured and installed to provide failure-proof reliability when called upon to operate. Transportation containers and equipment will utilize specialized valves adapted for the pressure, temperature, and reliability requirements of the application and industry. Additionally, some may need to survive fire conditions without failure.

Fueling stations for compressed natural gas employ valves that will endure cold temperatures produced by gas expansion, plus dynamic pressure cycling. Bubble tight shutoff is necessary to maintain safety.

Liquified natural gas (LNG) presents many of the same application challenges as pressurized gas, with the added element of cryogenic temperatures.

All of these applications can be adequately served with a properly selected and configured valve and actuator. Share your fluid flow control and valve challenges of all types with application specialists. The combination of your process knowledge and experience with their product application expertise will produce an effective solution.


Water Quality Analysis – Constituent Survey Part 3

industrial water quality represented as bubbles
Water quality can be a concern for process input or effluent
What we know as “water” can consist of many non-H2O components in addition to pure water. This three part series has touched on some of the constituents of water that are of interest to various industrial processors. The first installment reviewed dissolved oxygen and chloride. The second article covered sulfates, sodium, and ammonia. 

To conclude the three part series on water quality analysis in process control related industrial applications we examine silica, another element which in sufficient quantities can become a confounding variable in water for industrial use. In natural settings, silica, or silicon dioxide, is a plentiful compound. Its presence in water provides a basis for some corrosion-inhibiting products, as well as conditioners and detergents. Problems arise, however, when high concentrates of silica complicate industrial processes which are not designed to accommodate elevated levels. Specifically, silica is capable of disrupting processes related to boilers and turbines. In environments involving high temperature, elevated pressure, or both, silica can form crystalline deposits on machinery surfaces. This inhibits the operation of turbines and also interferes with heat transfer. These deposits can result in many complications, ranging through process disruption, decreased efficiency, and resources being expended for repairs.

The silica content in water used in potentially affected processes needs to be sufficiently low in order to maintain rated function and performance. Silica analyzers provide continuous measurement and monitoring of silica levels. The analyzers detect and allow mitigation of silica in the initial stages of raw material acquisition or introduction to prevent undue disruption of the process. Additionally, a technique called power steam quality monitoring allows for the aforementioned turbine-specific inhibition – related to silica conglomerates reducing efficacy and physical movement – to be curtailed without much issue. The feedwater filtration couples with a low maintenance requirement, resulting in reduced downtime of analytic sequences and a bit of increased peace of mind for the technical operator.

While silica and the other compounds mentioned in this series are naturally occurring, the support systems in place to expertly control the quality of water is the most basic requirement for harvesting one of the earth’s most precious resources for use. As a matter of fact, the identification and control of compounds in water – both entering the industrial process and exiting the industrial process – demonstrates key tenets of process control fundamentals: precision, accuracy, durability, and technological excellence paired with ingenuity to create the best outcome not just one time, but each time.

Q&A for Ultrasonic Level Switches

ultrasonic level switches
Ultrasonic level switches with single
and multiple level measurement points
Courtesy Magnetrol International
Ultrasonic level switches appear, at first glance, to be a renamed version of a vibrating tuning fork level switch. They have a similar appearance and tank mounting scheme, but a closer look at the technology of the two instruments reveals that they rely on different operating principles to indicate when liquid level reaches their fixed switch point.

A previous article , with an accompanying video, provided some comparison between the two detection methods. Here is the operational difference summarized. A vibrating tuning fork device monitors the resonant frequency of the vibrating fork and responds when the frequency shifts due to immersion of the fork in liquid. An ultrasonic level switch transmits an ultrasonic pulse across a gap, measuring the intensity of the received signal and determining whether the signal passed through liquid (high level received signal) or air (low level received signal). While both technologies are effective, the ultrasonic level switch can be applied over a wider range of liquid density and does not require recalibration or adjustment for a change in media density.

Magnetrol International, globally recognized innovator in level measurement technology and instruments, recently answered a few application questions in their blog about their Echotel ultrasonic switches. The questions, along with answers penned by Magnetrol's product manager Tom Kemme, are shared here.

Question: Can ECHOTEL be used in applications that have entrained air?

Answer: Yes, ECHOTEL ultrasonic switches can be used in applications that have entrained air. All ECHOTEL gap switches feature a tip-sensitive transducer that provides superior performance over side gap transducers that are offered by other companies. Side gap transducers allow gas bubbles to adhere to the upper surface of the gap, which cause false dry gap alarms. Tip sensitive transducers allow these bubbles to pass through the gap. Applications with severe turbulence or entrained air should use the Model 961 switch, which offers a time delay adjustment. Up to 10 seconds of delay can be used to disregard entrained air and reliably detect the true liquid level.

Question: We are considering adding level alarm switches to our process to provide high-high level indication in several tanks. Instead of switches with relay outputs, we are considering the current shift output. What are the advantages of a current shift output?

Answer: Current shift electronics simply shift the current output from 8 mA when the level switch is in the normal operation, to 16 mA to indicate a level alarm. ECHOTEL Model 961 also has a user selectable fault signal of 3.6 or 22 mA. Current shift switches are 2-wire loop powered, which allows them to be offered with intrinsically safe approvals. This allows these switches to be put into hazardous area locations at a lower cost since rigid conduit is not necessary. Since current shift switches provide constant indication of either a normal (8 mA), alarm (16 mA), or a fault (3.6 or 22 mA) condition, they are sometimes referred to as a transmitter for the price of a switch.

Share your level measurement requirements and challenges with process measurement specialists, combining your own process knowledge and experience with their product application expertise to develop effective solutions.

Applying Coriolis Flowmeters

coriolis flowmeter for industrial process measurement
Coriolis Flowmeter
Courtesy Yokogawa
Coriolis mass flow meters are widely used throughout the process measurement and control field. Their basic operating principle, combined with modern sensor and signal processing technology, provide a list of potential application advantages.
  • Directly measure mass flow based on the principle of measurement.
  • No "moving" parts (except the slightly vibrating sensor tubes).
  • Coriolis sensors have the ability to measure flow of non-conductive fluids.
  • Measure the mass flow rate with high accuracy.
  • Instruments can be applied across a wide usable measurement range.
  • Deliver density measurement based on oscillating frequency.
  • Not materially impacted by fluid viscosity or density.
  • Coriolis flow meters also do not need lengthy straight pipe sections upstream or downstream of the sensing unit.

SELECTION AND INSTALLATION RECOMMENDATIONS


Some considerations for product selection and installation of Coriolis mass flow meters:

  • Rapid temperature changes within the measured medium can impact measurement accuracy.
  • Wide ranges of connection types are available, specify the best match for your system.
  • Select sensor tube construction material to accommodate media characteristics.
  • For liquid measurement, the sensor tube will extend downward from a horizontal pipe run. 
  • As with most industrial products, there may be restrictions on where the device may be used. For example, not for use in aircraft. Assure that your application conforms with the intended usage of the instrument.
  • Install at least one tight shutoff valve adjacent to the instrument for purposes of zeroing. Isolation valves for inlet and outlet are preferred.
  • Follow manufacturer recommendations for pipe supports, if required, at inlet and outlet sides of the unit
  • Avoid installation at locations with high levels of vibration or strong electrical fields.
  • Locate the sensor unit at the lowest practical level in the piping system. This helps avoid collection of gas bubbles in the sensor tubes.
  • Sensor tubes need to be completely filled with subject medium to obtain accurate measurement.
  • Avoid the use of flexible connections and reducers at the unit connection points, unless in accordance with specific manufacturer guidelines.
The Coriolis flow meters of different manufacturers may have some particular recommendations, all of which should be followed to insure the best available performance, safety, and longevity of the unit.

Share your process instrumentation challenges and requirements with process measurement specialists, combining your process knowledge and expertise with their product application experience to develop effective solutions.

Specialty Valves for Biotech and Pharma Applications

stainless steel sanitary ball valve with handle cutaway view
Stainless steel ball valve for sanitary applications
Courtesy Habonim USA
Sanitary fluid process operations require the use of valves with unique characteristics that make them suitable for use. Materials of construction, FDA approved materials for seals, clean draining, and no retainage of the process fluid are some of the requirements for sanitary valves. Pharma and other bioprocess industries, including food and beverage, will also have stringent requirements for sterilizing or cleaning in place.

One manufacturer, Habonim, a globally recognized manufacturer of high quality ball valves, offers a complete line of ball valves specifically designed for sanitary process applications.

The TuBore valve series is available in line sizes from 1/4" to 6" with clamped or welded connections and available with manual operator, pneumatic or electric actuation.

The datasheet included below provides more detail and specifications. Share your sanitary fluid process control requirements and challenges with product specialists. Combining your process knowledge with their product application expertise will produce effective solutions.

Succeeding: Engineer as Peacemaker

Miller Energy engineer
Make Allies, Not Adversaries

Let's take a step away from the technical, but still focus on an important aspect of our work.

As engineers involved in process measurement and control, we are accustomed to everybody else looking to us for answers and solutions. We are the people that make things work. Occasionally the pressure and stress can get a little intense and strip away some of our civility in our dealings with those around us. You may have bitter experience with this as either victim or perpetrator. It never ends well. With a private and candid self-assessment about how we view and interact with other stakeholders in our projects, we may be able to scale down some of our stress and better focus on the reality of the task at hand. Consider the points below. Comment and add a few points of your own.

You are an expert, but so are they.


Accept that, just as you have specialized knowledge that others do not, they have specialized knowledge or insight you may lack. Encourage the sharing of knowledge with those you interface with on a project. Try to be proactive and ask gently probing questions to ascertain the comprehension level of others involved in the project in various roles. Their increased understanding of key project technical concepts will promote more effective communication throughout the duration of the project. It can also help to avoid missteps in your own progress. Good people appreciate the time you take to provide basic explanation of concepts they may not fully understand, but need to know. Make valuable allies of the other project stakeholders by freely contributing your expertise. It is an investment that costs you little, but may pay immense dividends at some future time.

Everybody else's job usually looks easier than it really is.


All jobs have their own special challenges and responsibilities that generate stress. Accept the notion that you probably do not fully comprehend the burdens on those around you. Your portion of the project is certainly critical, but no more so than that of anybody else. Everybody needs to perform or nobody succeeds. Try not to view your project tasks as compartmentalized, but rather as part of the combined joint effort of all stakeholders. Help out others whenever you can. Again, make allies.  

Everybody is somebody's customer.


Whomever you deliver your work product to is your customer. The people delivering their work to you should view you as their customer. Make your customers happy by adjusting aspects of your procedures to better satisfy their needs. In a more technical sense, your modified process output becomes an improved input to their process. Small changes in your delivery may produce comparatively large returns in customer satisfaction. Allies.

Do not embarrass or demean others...especially in public settings.


Embarrassment breeds anger, a desire for revenge, and other bad and unproductive things. Avoid words and deeds that will make a coworker or stakeholder look bad in front of others. If there is a problem, if there is a mistake, try to deal with it discreetly whenever possible. Giving a someone a chance to repair a mistake before it becomes public builds value in your relationship. Certainly, there can be instances where more is at stake than someone's pride. Use good judgement to recognize when you can privately give someone an opportunity to amend a situation without causing harm.

Reach a common understanding of project scope and technical details


Your organization's management or your company's client, whatever the case may be, will likely have project expectations which will be clearly understood in their mind, but perhaps not fully described to all those tasked with specific performance. It is also possible, even probable, these same stakeholders will have misconceptions or a lack of technical knowledge about certain facets of the project. Omissions from the project specs and gaps in the common understanding of technical aspects related to the work requirements can easily turn a fairly straight forward task into a wildfire of organizational mayhem. The way in which these situations are handled must be diplomatic. Injured egos can do more damage to project harmony and progress than the facts ever will. The delivery method for the facts will likely be more crucial than the facts themselves.

It's not about being right. It's about being successful.


At our company we recognize customers are more than merely people that buy things from us. They are people to whom we contribute our time and talent to help achieve their success,... which inevitably will lead to ours. Never hesitate to let us know how we are doing, or how we can help.

Miller Energy - Industrial Instrumentation and Process Control Solutions

Miller Energy is a Manufacturer's Representative and Distributor of industrial instrumentation and process control equipment.  Miller is committed to exceeding customers expectations by providing an unparalleled level of customer service and local technical support.

Miller offers the most comprehensive line of measurement, control, and communication solutions in industry today. The products provided by Miller solve challenging applications in the industrial gas, power, refining, chemical / petro-chemical, food & beverage, water/wastewater, and pharmaceutical markets.

Welcome to the Process Measurement, Instrumentation and Control Blog, sponsored by Miller Energy

Welcome! We hope (over time) you find this blog interesting to visit and it becomes a trusted resource for process measurement and control. We plan on weekly educational and informative blog posts innovative process control solutions, insight to how industrial controls work, and new products that solve tough engineering challenges. Please come back often!