Showing posts with label Eastern Pennsylvania. Show all posts
Showing posts with label Eastern Pennsylvania. Show all posts

Smart Output™ Module For Water System Monitoring

magnetic flowmeter variants
Full bore flanged and insertion style magnetic flowmeters,
with Smart Output™ technology to enhance their functionality.
Image courtesy McCrometer 
Water distribution systems, though mostly invisible to the general public, are highly complex infrastructure arrangements that extend to a very large number of locations throughout a service area. Monitoring the activity and operational health of the distribution system, key to maintaining high levels of efficiency and service, requires measurement instrumentation installed throughout the system.

Magnetic flowmeters are an integral part of water system instrumentation. Their advantages for use in water systems were outlined in a previous article on how magnetic flowmeters work. McCrometer is an innovator in the design and manufacture of magnetic flowmeters for water system flow measurement. Their Smart Output™ technology is available for use with full bore flanged and insertion style flowmeters to provide the information needed for modern water system operation.

  • AC or DC powered versions
  • Compatible with Sensus and Itron smart water networks
  • Enables networking of water meters throughout distribution system
  • Queries, diagnostics, and data transfer can be scheduled or on demand
  • Enables AMR (Automatic Meter Reading) and AMI (Advanced Metering Infrastructure)
The Smart Output™ function is an additional module included as part of the instrument transmitter. 

More information is available from product application specialists, with whom you should share your flow measurement challenges of all types. Leverage your own process knowledge and experience with their product application expertise to develop effective solutions.

Best Temperature Control Performance Starts With a Match of Sensor Configuration to Application

temperature sensors configured for surface temperature measurement
A specially configured temperature sensor can improve
measurement response and process control.
Image courtesy Applied Sensor Technologies
There are more temperature controlled operations than any of us could count in a lifetime, each with a set of signature performance requirements and design challenges. Matching the means of temperature measurement, the control loop characteristics, and heat delivery method to the application are essential to achieving successful operation.

Step one is to measure the process temperature. This sounds simple until you start researching products and technologies for measuring temperature. Like the temperature controlled operations mentioned previously, they are numerous. To filter the possible candidates for temperature sensing devices, consider these aspects of your application and how well a particular sensor may fulfill your requirement.
  • Response Time - How rapidly the sensor will detect a change in process temperature is a function of how the sensor is constructed and how it is installed. Most temperature sensors are enclosed or encapsulated to provide protection for the somewhat vulnerable sensing element. Greater mass surrounding the sensing element, or a shape that inhibits heat transfer from the process to the sensor, will slow sensor response. Whether the slower response time will adversely impact process operation needs to be considered. More consideration is due to the manner in which the temperature sensor assembly is installed. Not all applications involve a fluid in which the sensor assembly can be conveniently immersed, and even these applications benefit from careful sensor placement.
  • Accuracy - Know what your process needs to be effective. Greater levels of accuracy will generally cost more, possibly require more care and attention to assure the accuracy is maintained. Accuracy is mostly related to the type of sensor, be it RTD, thermocouple, or another type.
  • Sensitivity - Related to the construction, installation, and type of sensor, think of sensitivity as the smallest step change in process temperature that the sensor will reliably report. The needs of the process should dictate the level of sensitivity specified for the temperature sensor assembly.
Take a simple application as an illustration. Heat tracing of piping systems is a common function throughout commercial and industrial settings experiencing periods of cold weather. Electric heat trace installations benefit from having some sort of control over the energy input. This control prevents excessive heating of the piping or applying heat when none is required, a substantial energy saving effort. A temperature sensor can be installed beneath the piping's insulation layer, strapped to the pipe outer surface. A specially designed sensor assembly can improve the performance of the sensor and the entire heat trace control system by enhancing the response time of the temperature sensor. A right angled sheath permits insertion of the sensor beneath the piping insulation while orienting the connection head upright. A surface pad at the tip of the sheath increases the surface contact with the pipe to provide faster sensor response. The surface pad is a metal fixture welded to the sensing end of the temperature sensor assembly. It can be flat, for surface temperature measurements, or angled for installation on a curved surface, like a pipe. The increased surface contact achieved with the surface pad promotes the conduction of heat to the sensor element from the heated pipe in our illustration. This serves to reduce and improve the response time of the sensor. Adding some thermally conductive paste between the pad and the pipe surface can further enhance the performance. While the illustration is simple, the concepts apply across a broad range of potential applications that do not allow immersion of the temperature assembly in a fluid.

A simple modification or addition of an option to a standard sensor assembly can deliver substantially improved measurement results in many cases. Share your temperature measurement requirements and challenges with a process measurement specialist. Leverage your own process knowledge and experience with their product application expertise.

Maintenance Procedures - Yokogawa ADMAG TI Series AXW Magnetic Flowmeter

magnetic flow meter with corrosion resistant lining
The AXW series of magnetic flow meters is available in
a range of sizes with corrosion resistant lining.
Image courtesy Yokogawa
The ADMAG AXW™ series of magnetic flow meters has been developed based on Yokogawa's decades of experience in the design and manufacture of magnetic flowmeters. The AXW series continues the tradition of high quality and reliability that has become synonymous with the Yokogawa name.

The AXW series is ideal for industrial process lines, and water supply and sewage applications. With outstanding reliability and ease of operation, developed on decades of field-proven experience, the AXW will increase user benefits while reducing total cost of ownership.

Magnetic flow meters, also called electromagnetic flow meters or "magmeters", operate on a very simple principal. An electrically conductive liquid moving through a magnetic field will generate a voltage that is related to the velocity of the liquid. Magnetic flow meters have no moving parts and present little to no pressure drop to the piping system into which they are installed.

Sizes are available from 500 to 1800 mm (20 to 72 inch.) with a wide liner selection such as PTFE, natural hard rubber, natural soft rubber, and polyurethane rubber. The line accommodates industry standard process connections such as ASME, AWWA, EN, JIS, and AS flange standards. A submersible version is also available.

Care and maintenance for magnetic flow measurement devices is simple and minimal. The manual included below provides basic guidelines for maintenance procedures of ADMAG TI (Total Insight) Series AXW magnetic flowmeters. Share your flow measurement challenges with process instrument specialists, leveraging your own knowledge and experience with their product application expertise.


Top End Guided Wave Radar Level Transmitter

guided wave radar level transmitter
Magnetrol's model 706 embodies the best of guided
wave radar level measurement.
Image courtesy of Magnetrol
The Eclipse Model 706 is Magnetrol's loop powered high performance guided wave radar level transmitter. It incorporates many of the company's latest innovations into a single instrument capable of meeting the demanding requirements of an array of industrial applications.

Product improvements include increased signal to noise ratio, suitability for use with low dielectric media, and the ability to deliver accurate indication under foaming, flashing, or other challenging conditions. An extended probe offering enables use in measuring interface, liquified gas, even bulk solids.

The instrument is suitable for overfill applications, and does not use algorithms to infer measurements in a dead zone that may occur near the top of the probe in some other designs. The Eclipse 706 delivers true measurement right up to the process flange. Upgraded electronics allow the unit to be pre-configured prior to shipment, if requested. Additionally, the widest range of communications options is available.

For more information, share your level measurement challenges with a process measurement specialist. Leverage your own process knowledge and experience with their product application expertise to develop effective solutions.


Miller Energy Expands Capabilities With New Valve Line

sliding gate valve with actuator
The sliding gate control valve is part of the Schubert & Salzer
product line. Image courtesy Schubert & Salzer.
Miller Energy is pleased to now represent, in the company's Pennsylvania office, Schubert & Salzer, a recognized innovator and manufacturer of high precision process flow control valves.

Schubert & Salzer specializes in precise control and stop valves for industrial fluid processing operations.
  • Sliding gate valves
  • Ball Sector Valves
  • Segment disc valves and segment disc orifices
  • Seat valves
  • Three-way valves
  • Sanitary valves
  • Pinch Valves
  • Manual valves
  • Positioners & controllers
  • Accessories to complement all products
With the expansion of its already wide range of common and specialized valve technologies, Miller Energy further solidifies its position as the go-to source for solutions to fluid process control challenges. Contact the Pennsylvania office for detailed product information. Share your challenges and leverage your process knowledge and experience with their product application expertise to develop effective solutions.


Magnetic Level Indicators

magnetic level gauge magnetic level indicator
Configurations of magnetic level gauges
Image courtesy Orion/Magnetrol
Fluid process control operations often involve vessel or tank storage of liquids. Continuous and accurate indication of the liquid level within the tank is an essential data point for process control decision making and safety. Several methods and instrument types are available for tank level measurement, each with its own set of attributes that may be advantageous for a particular installation. Selection criteria for a tank liquid level indicator may include:
  • Direct or indirect measurement of level
  • Level measurement accuracy and reliability
  • Tank shape, regular or irregular
  • Media compatibility with measurement device
  • Requirements for maintenance or calibration
  • Compatibility with process temperature and pressure range
  • Local display and visibility
  • Level indication signal type and transmission
  • Level alarm switches or other indicators
The selection of a magnetic level indicator, also referred to as a magnetic level gauge, for the project will likely be based upon at least one of the instrument's strengths. Magnetic level gauges have a host of potentially positive features for level indication.
  • Continuous level measurement
  • Operable without electric power
  • Direct visual tank fluid level indication, regardless of tank shape or profile.
  • Wide range of operating temperature and pressure
  • Breakage resistant construction
  • Range of construction materials available to accommodate corrosive media
  • Measuring indicators, switches, and transmitters mounted externally, without contacting the medium being measured.
  • Low maintenance operation.
  • Readable level indication from greater distance than glass sight gauges.
  • Applicable to large fluid level ranges with a single instrument.
Magnetic level indicators have a strong position in the tank liquid level measurement field and should be considered as a candidate for fulfilling those application requirements. There are many options available to customize the level indicator for each specific application. I have included a technical data sheet from Orion Instruments, a manufacturer of level instrumentation, for more detail. Share your application challenges with a sales engineer that specializes in level measurement. Combining your process knowledge with their product application expertise will yield positive solutions.


Bulb and Capillary Temperature Switches

general purpose industrial temperature pressure vacuum switch
General purpose temperature switch with bottom connection
for capillary and bulb specific for each application.
Image courtesy United Electric Controls
Not all processes or operations require the use of state of the art technology to get the desired results. Part of good process design is matching up the most appropriate methods and technology to the operation.

One method of changing the state of a switch in response to a process temperature change is a bulb and capillary temperature switch. The switch operation produces a state change in the mechanical switch when the temperature of a process control operation crosses a certain threshold. Bulb and capillary switches have the advantage of operating without electricity, simplifying their application.

The physical operating principle behind the capillary thermostat relies on the use of a fluid. The fluid inside the thermostat expands or contracts in response to the temperature at the sensing bulb. The change in fluid volume produces a force upon a diaphragm or other mechanical transfer device. The diaphragm is connected to, and changes the status of, an adjoining circuit using a snap action switch. For example, a main use of the operating principle in action is when a commercial food company relies on the capillary switch to control temperature related to processing and distribution. Each individual use of a bulb and capillary thermostat is specifically designed based on manufacturer and industry specifications, all of which apply the same physical principle of fluid based physics.

Because of their simplicity and comparatively modest cost, commercial versions of bulb and capillary switches find application throughout residential and commercial settings. Some common applications include warming ovens, deep fat fryers, and water heaters. The HVAC industry uses capillary and bulb switches because the rate of temperature change found in their applications fits the adjoining range offered by the bulb and capillary type switches. Operation of the temperature switches is subject to a few limitations. The switching point is often fixed, so the application must be without a requirement for an adjustable setpoint. The temperature range over which the switches are suitable is comparatively limited, with a matching of the bulb and capillary fluid system to the application temperature range a necessary task in product selection. Within its proper sphere of use, though, bulb and capillary temperature switches offer simple, reliable operation, with little requirement for maintenance.

Bulb and capillary switches are typically used to evaluate average temperature and are especially useful for applications where the temperature is to be maintained at a well-known, consistent value. The bulb portion can be configured to accommodate mounting within the media to be controlled. The devices can be applied effectively to liquid and gaseous media when the proper bulb is used.

Industrial versions of bulb and capillary switches are fitted with appropriate housings for the installation environment. Hazardous location installation can be accommodated, as well as high current ratings and auxiliary functions. There are almost countless variants of bulb and capillary temperature switches available. Don’t overlook these simple mechanical devices as candidates for application in any temperature control process. Share your application requirements and challenges with product specialists for useful recommendations.


Application of Load Cells in Process Measurement

Advanced force, weight instrument for load cells
The advanced model G5 can handle input signals from multiple load cells
Image courtesy of BLH Nobel
In industrial application of process measurement and control, principles of the physical sciences are combined with technology and engineering to create devices essential to modern high speed, high accuracy system operation. Years of research, development, and the forward march of humanity’s quest for scientific knowledge and understanding yields packaged devices for process measurement that are easily applied by system designer and operators.

Load cells are the key components applied to weighing component or processed materials in modern industrial operations. Load cells are utilized throughout many industries related to process management, or just simple weighing operations. In application, a load cell can be adapted for measurement of items from the very small to the very large.

In essence, a load cell is a measurement tool which functions as a transducer, predictably converting force into a unit of measurable electrical output. While many types of load cells are available, one popular cell in multiple industries is a strain gauge based cell. Strain gauge cells typically function with an accuracy range between 0.03% and 0.25%. Pneumatically based load cells are ideal for situations requiring intrinsic safety and optimal hygiene. For locations without a power grid, there are even hydraulic load cells, which function without need for a power supply. These different types of load cells follow the same principle of operation: a force acts upon the cell (typically the weight of material or an object) which is then returned as a value. Processing the value yields an indication of weight in engineering units.

For strain gauge cells, deformation is the applied operational principal, where extremely small amounts of deformation, directly related to the stress or strain being applied to the cell, are output as an electrical signal with value proportional to the load applied to the cell. The operating principle allows for development of devices delivering accurate, precise measurements of a wide range of industrial products.

Load cell advantages include their longevity, accuracy, and adaptability to many applications, all of which contribute to their usefulness in so many industries and applications. A common place to find a strain gauge load cell in use is off a causeway on a major highway at a truck weigh station. Through innovation, load cells have been incorporated in an efficient measuring system able to weigh trucks passing through the station, without having each stop. Aircraft can be weighed on platform scales which utilize load cells, and even trains can be weighed by taking advantage of the robust and dependable nature of the transducers.

Thanks to their widespread incorporation and the sequential evolution of technology, load cells are a fantastically useful tool in process measurement and control. Share your process weighing challenges with application experts, combining your own process expertise with their product knowledge to develop an effective solution.

Electronic to Pneumatic Converter

illustration of setup for current to pneumatic converter
Component schematic using electronic controller and pneumatic
control valve
Image courtesy of Yokogawa
A straight forward device, the current to pneumatic converter produces a pneumatic output signal that is proportional to an electrical control level input signal of 4 to 20 mA or 10 to 50 mA. This provides a useful interface between electronic controllers and pneumatically operated valves, air cylinders, or other air operated control elements.

Pneumatic signals are regularly used throughout many installations as matter of safety, legacy, or because a pneumatic signal can provide motive power to an operating device such as a valve positioner. Electrical control signals can be transmitted long distances across wires to deliver control signals to operating elements. The current to pneumatic converter provides a bridge between the two systems and allows the most beneficial aspects of each to be brought to bear on process operation.

Converters are available in standard variants that accommodate a number of hazardous location designations, as well as several output pressure ranges and calibrations. Share your process control connectivity challenges with application specialists, combining your own process knowledge and experience with their product application expertise to develop effective solutions.


WirelessHART Toxic and Combustible Gas Detector

wirelessHART toxic and combustible gas detector
Vanguard WirelessHART toxic and combustible
gas detector for industrial safety use.
Image courtesy United Electric Controls
Earlier this year, United Electric Controls released its Vanguard WirelessHART gas detector for use in a wide range of industrial settings. Detecting potentially hazardous levels of toxic or combustible gases is an essential element of plant safety where these gases are employed. The Vanguard detector integrates seamlessly into existing WirelessHART networks and asset management systems. A battery lifespan of 5 years and a design that provides in-place test and calibration mean there will be little burden to maintaining the proper operation of the unit.

More detail is provided in the brochure included below. The Vanguard incorporates solid construction and design features to deliver ease of use and long service life. Share your gas detection and process measurement challenges with instrumentation specialists. Combining your own process experience and knowledge with their product application expertise will result in an effective solution.



Level and Flow Instruments for Hygienic Applications

Magnetrol is a globally recognized leader in the manufacture of flow and level instrumentation for industrial scale applications. The products employ a range of differing technologies to provide measurement precision across an array of challenging applications. The informational piece included below highlights Magnetrol's products intended for use in industries, such as pharma or food processing, where special materials and product design are employed to meet the special requirements of hygienic processing.

Share your flow and level measurement challenges with process instrumentation experts, combining your own knowledge and experience with their expertise to develop effective solutions.


Pump Protection Using Thermal Dispersion Flow Switches

thermal dispersion flow switch
Thermal dispersion flow switches have advantages
when applied for pump protection
Image courtesy Magnetrol
Good practice for installing industrial pumps calls for inclusion of protective devices to assure that the pump is not exposed to conditions beyond its design intent. Monitoring liquid flow is a useful method for determining if a pump is operating within a safe range.

There are numerous methods of verifying flow in piping connected to a pump. Magnetrol, globally recognized manufacturer of flow and level measurement technologies, offers up their assessment of various pump protection measures and a recommendation for what they consider an advantageous choice for flow measurement in a pump protection application.

Magentrol's white paper is included below, and you can share your flow and level measurement challenges with application experts for help in developing effective solutions.


Sometimes the Simple Solution Is the Best

metal tube variable area flowmeter
This metal tube variable area flow meter is reliable,
accurate, and requires little maintenance
Photo courtesy Brooks Instrument
For process control and commercial or industrial applications, there are numerous methods of flow measurement from which to choose. Technologies range from very simple applications of physical principles to deployment of very specialized electronics and sensors. The available range of accuracy, response, and cost is quite broad, with a general expectation that higher cost will deliver better performance and accuracy.

Making the best instrument selection for a flow measurement application should include an assessment of what the operators really need in order to safely and effectively run the process or perform the task related to the measurement of fluid flow. Installing instrumentation with capabilities far beyond what is required is almost certainly a waste of financial resources, but may also have an unexpected impact on operators. Through the generation of data that, while accurate, does not provide any actionable information about process condition, operators can be misled, similar to the occurrence of a false or nuisance alarm. Some applications call for high accuracy, some do not. Define your informational needs and select instruments that will meet those needs.

There is a large array of applications that can be satisfied with simpler, less costly measurement technology. These devices often employ turbines or vanes to produce an indication of flow rate. Incorporated into some of the instruments is a means to visually observe the flowing liquid to verify color and clarity. Simple devices sometimes are intended only to indicate the presence of fluid flow, and whether the flow rate is high or low. Configurations are available that allow insertion into lines under pressure (hot tap) through a full port ball valve. Other variants with combinations of features and capabilities abound.

The selection range is enormous, so define your minimum needs first, then search for a compatible product. Your search can be enhanced by contacting an instrumentation specialist. Combining your process expertise with their broad product knowledge will produce effective solutions.


Heat Processing of Industrial Fluids

gas fired steam boilers in industrial facility
Steam produced by gas fired industrial boilers is a
commonly applied means of delivering heat energy
Heat, as an entity, was not always something seen as a partially visible potential indicator of changing weather patterns. The now outdated caloric theory portrayed heat as a measure of an invisible fluid called the caloric, typifying it as a solely physical property. Thermodynamics have surpassed the caloric theory and rendered it obsolete, but the understanding and manipulation of heat in industrial settings, especially pertaining to fluids, is a central part of some of the world’s most important industries. Specifically, the measurement and control of heat related to fluid processing is a vital industrial function, and relies on regulating the heat content of a fluid to achieve a desired temperature and outcome.

The manipulation of a substance’s heat content is based on the central principle of specific heat, which is a measure of heat energy content per unit of mass. Heat is a quantified expression of a system’s internal energy. Though heat is not considered a fluid, it behaves, and can be manipulated, in some similar respects. Heat “flows” from points of higher temperature to those of lower temperature, just as a fluid will flow from a point of higher pressure to one of lower pressure.

A heat exchanger provides an example of how the temperature of two fluids can be manipulated to regulate the flow or transfer of heat. Despite the design differences in heat exchanger types, the basic rules and objectives are the same. Heat energy from one fluid is passed to another across a barrier that prevents contact and mixing of the two fluids. By regulating temperature and flow of one stream, an operator can exert control over the heat content, or temperature, of another. These flows can either be gases or liquids. Heat exchangers raise or lower the temperature of these streams by transferring heat between them.

Recognizing the heat content of a fluid as a representation of energy helps with understanding how the moderation of energy content can be vital to process control. Controlling temperature in a process can also provide control of reactions among process components, or physical properties of fluids that can lead to desired or improved outcomes.

Heat can be added to a system in a number of familiar ways. Heat exchangers enable the use of steam, gas, hot water, oil, and other fluids to deliver heat energy. Other methods may employ direct contact between a heated object (such as an electric heating element) or medium and the process fluid. While these means sound different, they all achieve heat transfer by applying at least one of three core transfer mechanisms: conduction, convection, and radiation. Conduction involves the transfer of heat energy through physical contact among materials. Shell and tube heat exchangers rely on the conduction of heat by the tube walls to transfer energy between the fluid inside the tube and the fluid contained within the shell. Convection relates to heat transfer due to the movement of fluids, the mixing of fluids with differing temperature. Radiant heat transfer relies on electromagnetic waves and does not require a transfer medium, such as air or liquid. These central explanations are the foundation for the various processes used to regulate systems in industrial control environments.

The manner in which heat is to be applied or removed is an important consideration in the design of a process system. The ability to control temperature and rate at which heat is transferred in a process depends in large part on the methods, materials, and media used to accomplish the task. Selecting and properly applying the best suited controls, instruments and equipment is a key element of successful process operation. Share your challenges with application experts, combining your own process knowledge and experience with their product expertise to develop effective solutions.

Valves for LNG and CNG Operations

high pressure valve intended for use with natural gas
Valve specially designed for gas extraction operations
has integral bypass which equalizes pressure across the
valve prior to opening the main line, reducing torque
requirements and  piping stress.
Courtesy Habonim
The production and distribution of natural gas presents operators with substantial logistical, safety, and physical challenges. Maintaining flow control, containing, and dispensing of natural gas, CNG, and LNG are hazardous endeavors requiring special equipment configuration throughout the supply chain.

Source and pipeline operations are faced with high pressure and extreme working environments. At various points along the distribution path, valves will be needed to regulate or direct flow and isolate portions of the system for safety or service. Emergency shutdown valves must be configured and installed to provide failure-proof reliability when called upon to operate. Transportation containers and equipment will utilize specialized valves adapted for the pressure, temperature, and reliability requirements of the application and industry. Additionally, some may need to survive fire conditions without failure.

Fueling stations for compressed natural gas employ valves that will endure cold temperatures produced by gas expansion, plus dynamic pressure cycling. Bubble tight shutoff is necessary to maintain safety.

Liquified natural gas (LNG) presents many of the same application challenges as pressurized gas, with the added element of cryogenic temperatures.

All of these applications can be adequately served with a properly selected and configured valve and actuator. Share your fluid flow control and valve challenges of all types with application specialists. The combination of your process knowledge and experience with their product application expertise will produce an effective solution.


Water Quality Analysis – Constituent Survey Part 3

industrial water quality represented as bubbles
Water quality can be a concern for process input or effluent
What we know as “water” can consist of many non-H2O components in addition to pure water. This three part series has touched on some of the constituents of water that are of interest to various industrial processors. The first installment reviewed dissolved oxygen and chloride. The second article covered sulfates, sodium, and ammonia. 

To conclude the three part series on water quality analysis in process control related industrial applications we examine silica, another element which in sufficient quantities can become a confounding variable in water for industrial use. In natural settings, silica, or silicon dioxide, is a plentiful compound. Its presence in water provides a basis for some corrosion-inhibiting products, as well as conditioners and detergents. Problems arise, however, when high concentrates of silica complicate industrial processes which are not designed to accommodate elevated levels. Specifically, silica is capable of disrupting processes related to boilers and turbines. In environments involving high temperature, elevated pressure, or both, silica can form crystalline deposits on machinery surfaces. This inhibits the operation of turbines and also interferes with heat transfer. These deposits can result in many complications, ranging through process disruption, decreased efficiency, and resources being expended for repairs.

The silica content in water used in potentially affected processes needs to be sufficiently low in order to maintain rated function and performance. Silica analyzers provide continuous measurement and monitoring of silica levels. The analyzers detect and allow mitigation of silica in the initial stages of raw material acquisition or introduction to prevent undue disruption of the process. Additionally, a technique called power steam quality monitoring allows for the aforementioned turbine-specific inhibition – related to silica conglomerates reducing efficacy and physical movement – to be curtailed without much issue. The feedwater filtration couples with a low maintenance requirement, resulting in reduced downtime of analytic sequences and a bit of increased peace of mind for the technical operator.

While silica and the other compounds mentioned in this series are naturally occurring, the support systems in place to expertly control the quality of water is the most basic requirement for harvesting one of the earth’s most precious resources for use. As a matter of fact, the identification and control of compounds in water – both entering the industrial process and exiting the industrial process – demonstrates key tenets of process control fundamentals: precision, accuracy, durability, and technological excellence paired with ingenuity to create the best outcome not just one time, but each time.

New Pulsar R86 Non-contact Radar Level Transmitter From Magnetrol

non-contact radar level transmitter
Magnetrol's new non-contact radar level transmitter,,
Pulsar R86
Courtesy Magnetrol
Level measurement is a part of countless industrial processes and installations. Accurate measurement of contained solids or liquid enhances safety and operational efficiency, both of which contribute to the bottom line.

Magnetrol, globally recognized innovator in flow and level measurement, recently released its latest version of non-contact radar level measuring instruments. The Pulsar R86 transmitter operates in the 26GHz range, delivering a smaller wavelength with improved resolution, smaller antenna, and a narrower beam. Other unique innovations have been incorporated into the instrument to simplify installation and application.

The R86 is suitable for a broad range of applications across almost every industry. On board diagnostics are incrementally advanced to provide best performance and deliver the information needed to maintain proper operation.

The latest information on the Pulsar R86 is included below. Reach out to process measurement specialists and share your measurement challenges and requirements. Combining your own process knowledge and experience with their product application expertise will result in an effective solution.


Water Quality Analysis – Constituent Survey (Part 2)

bubbles in water
Water can contain many contaminants
It would be difficult to understate the role and importance of water in industrial processing, even our own biological existence. In the first installment of this series, the roles of dissolved oxygen and chlorides were covered.

Continuing the examination of water quality monitoring in municipal and industrial processes, another key variable which requires monitoring for industrial water use is sulfate. Sulfate is a combination of sulfur and oxygen, salts of sulfuric acid. Similarly to chlorides, they can impact water utilization processes due to their capability for corrosion. The power generation industry is particularly attuned to the role of sulfates in their steam cycle, as should be any boiler operator. Minerals can concentrate in steam drums and accelerate corrosion. Thanks to advancements in monitoring technology, instruments are available which monitor for both chlorides (covered in the previous installment in this series) and sulfates with minimal supervision needed by the operator, ensuring accurate detection of constituent levels outside of an acceptable range. Ionic separation technologies precisely appraise the amount of sulfate ions in the stream, allowing for continuous evaluation and for corrective action to be taken early-on, avoiding expensive repairs and downtime.

Another substance worthy of measurement and monitoring in process water is sodium. Pure water production equipment, specifically cation exchange units, can be performance monitored with an online sodium analyzer. Output from the cation bed containing sodium, an indication of deteriorating performance, can be diverted and the bed regenerated. Steam production and power generation operations also benefit from sodium monitoring in an effort to combat corrosion in turbines, steam tubes, and other components. Sodium analyzers are very sensitive, able to detect trace levels.

Ammonia is comprised of nitrogen and hydrogen and, while colorless, carries a distinct odor. Industries such as agriculture utilize ammonia for fertilizing purposes, and many other specializations, including food processing, chemical synthesis, and metal finishing, utilize ammonia for their procedural and product-oriented needs. An essential understanding of ammonia, however, includes the fact that the chemical is deadly to many forms of aquatic life. Removing ammonia from industrial wastewater is a processing burden of many industries due to the environmental toxicity.

Methods for removing ammonia from wastewater include a biological treatment method called ‘conventional activated sludge’, aeration, sequencing batch reactor, and ion exchange. Several methods exist for in-line or sample based measurement of ammonia concentration in water. Each has particular procedures, dependencies, and limitations which must be considered for each application in order to put the most useful measurement method into operation.

As water is an essential part of almost every facet of human endeavor and the environment in which we all dwell, the study and application of related analytics is an important component of many water based processes. The variety of compounds which can be considered contaminants or harmful elements when dissolved or contained in water presents multiple challenges for engineers and process operators.

The detection and measurement of water constituents can pose challenges to plant operators. Share your requirements with instrumentation experts, and combine your own process knowledge and experience with their product application expertise to formulate an effective solution.

Water Quality Analysis – Constituent Survey (Part 1)

wastewater sewage treatment plant aerial view
Water quality analysis is utilized at sewage treatment plants,
but at many other industrial facilities, too.
Of all the raw materials available for human consumption – aside from the air we breathe – the most vital component of life on earth is water. In addition to the global need for humans to drink water in order to survive, the use of water is essential in a myriad of industries relating to process control. Whether the goal is the production or monitoring of pure water for industrial use, or the processing of wastewater, the ability to measure the presence and level of certain chemical constituents of water is necessary for success.

In order to use water properly, industrial professionals combine state of the art analyzers with technical expertise to evaluate water quality for use or disposal. Two essential values of process control are ensuring elements of a control system are accurate and secure, and, furthermore, that they are accurate and secure for each product every time. By properly vetting water in industry, engineers and other personnel in fields such as pharmaceuticals, chemical, food & beverage, brewing, power, and microelectronics are able to maintain standards of production excellence and conform with regulatory requirements related to water quality.

The amount of dissolved oxygen present in water can correlate with the degree of movement at an air-water interface, also being impacted by pressure, temperature, and salinity. Excessive or deficient dissolved oxygen levels in industrial process waters may have an impact on process performance or end product quality. Likely, the most common application for dissolved oxygen measurement is in the evaluation of wastewater for biological oxygen demand. The primary function of dissolved oxygen in wastewater is to enable and enhance the oxidation of organic material by aerobic bacteria, a necessary step in treatment.

To measure dissolved oxygen, specialized sensors and companion instruments are employed that require careful maintenance and trained technical operators. The level of measurement precision varies depending on the industry employing the technology, with numerous applications also being found in the food & beverage and pharmaceutical industries. In-line continuous measurement is used in wastewater processing to determine if the dissolved oxygen remains in a range that supports the bacteria necessary for biodegradation.

Chloride concentration in wastewater is strictly regulated. Industrial and commercial operation effluent can be regulated with respect to allowable chloride content. While commonly found in both streams and wastewater, chlorides, in large amounts, can present challenges to water utilization or processing facilities. Chloride levels impact corrosion, conductivity, and taste (for industries in which such a variable is paramount). In a process system, having an essential component marred due to elevated quantities of a substance could reverberate into any end-product being manufactured. Chloride analyzers, some of which can also detect and monitor other water characteristics, serve as important tools for water consuming facilities to meet regulatory standards for effluent discharge or internal quality standards for recycling.

There are other constituents of what we refer to as “water” that are subject to measurement and monitoring for a range of institutional, industrial, and municipal applications. Those will be explored in the next part of this article series.

Primary Flow Elements - Orifice Plate

orifice plate for measuring fluid flow
A simple orifice plate
Courtesy Flow Lin
An orifice plate, at its simplest, is a plate with a machined hole in it. Carefully control the size and shape of the hole, mount the plate in a fluid flow path, measure the difference in fluid pressure between the two sides of the plate, and you have a simple flow measurement setup. The primary flow element is the differential pressure across the orifice. It is the measurement from which flow rate is inferred. The differential pressure is proportional to the square of the flow rate.

An orifice plate is often mounted in a customized holder or flange union that allows removal and inspection of the plate. A holding device also facilitates replacement of a worn orifice plate or insertion of one with a different size orifice to accommodate a change in the process. While the device appears simple, much care is applied to the design and manufacture of orifice plates. The flow data obtained using an orifice plate and differential pressure depend upon well recognized characteristics of the machined opening, plate thickness, and more. With the pressure drop characteristics of the orifice fixed and known, the measuring precision for differential pressure becomes a determining factor in the accuracy of the flow measurement.

There are standards for the dimensional precision of orifice plates that address:

  • Circularity of the bore
  • Flatness
  • Parallelism of the faces
  • Edge sharpness
  • Surface condition
Orifice plates can be effectively "reshaped" by corrosion or by material deposits that may accumulate from the measured fluid. Any distortion of the plate surface or opening has the potential to induce measurable error. This being the case, flow measurement using an orifice plate is best applied with clean fluids.

Certain aspects of the mounting of the orifice plate may also have an impact on its adherence to the calibrated data for the device. Upstream and downstream pipe sections, concentric location of the orifice in the pipe, and location of the pressure measurement taps must be considered.

Properly done, an orifice plate and differential pressure flow measurement setup provides accurate and stable performance. Share your flow measurement challenges of all types with a process measurement specialist, combining your own process knowledge and experience with their product application expertise to develop an effective solution.