Wednesday, July 15, 2015

Guided Wave Radar for Hygienic Applications: Advantages Over Other Technologies

Guider Wave Radar
Guided Wave Radar
for Hygienic
Applications
Operating Principle

Guided wave radar is based upon the principle of TDR (time domain reflectometry). Pulses of electromagnetic energy travel via the waveguide. The pulse is reflected when it contacts a liquid surface and the distance is then calculated.

Guided wave radar transmitters are available with a 304 stainless steel housings designed specifically for use in hygienic applications. This instrument meets the needs and requirements for the wetted and non-wetted materials, process connections and surface finishes of hygienic industries.
Features
  • Low dielectric measurement capability (╬Ár >_ 1.4)
  • Volumetric output
  • Quick connect/disconnect probe coupling
  • Operates in visible vapors and ignores most foams
  • IS, XP, and Non-Incendive approvals
  • Ignores coating buildup
Advantage Over Other Technologies
  • Advantage over Differential / Hydrostatic Pressure Transmitter:  Replaced by Eclipse due to setpoint shifts, blockage, leakage, installation cost & long term calibration / maintenance
  • Advantage over Magnetostrictive: Replaced by Eclipse due to setpoint shifts, turn-down and clean ability & long term calibration / maintenance.
  • Advantage over RF Capacitance: Replaced by Eclipse due to dielectric shifts, coating issues & long term calibration / maintenance.
  • Advantage over Load Cells: Eclipse is more cost effective and long term cost of ownership is lower due to long term calibration / maintenance.
  • Advantage over Ultrasonic: Replaced by Eclipse due to vapors, condensation, temperature restrictions, foaming & turbulence.
  • Advantage over Through Air Radar: Replaced by Eclipse due to performance issues on low dielectric media, short range measurement because of dead band issues in small vessels, measurement issues when using false echo rejection from internal obstructions such as agitators and spray balls, signal attenuation from turbulence, foam, condensation and spray from spray balls used during cleaning or product filling. Through air radar can have issues from variable false echoes generated when spray hits the antenna when vessel is filled from spray balls.
For more information see this Guided Wave Radar bulletin: